Suppr超能文献

蛋白激酶A介导的磷酸化对大鼠离体心脏和心肌肌原纤维功能的分子特异性影响。

Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.

作者信息

Hanft Laurin M, Cornell Timothy D, McDonald Colin A, Rovetto Michael J, Emter Craig A, McDonald Kerry S

机构信息

Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA.

Department of Biomedical Sciences, College of Veterinary Medicine University of Missouri, Columbia, MO 65211, USA.

出版信息

Arch Biochem Biophys. 2016 Jul 1;601:22-31. doi: 10.1016/j.abb.2016.01.019. Epub 2016 Feb 15.

Abstract

Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.

摘要

β-肾上腺素能系统增强心肌细胞收缩力是提高心输出量以满足血流动力学需求的重要机制,而这一过程在衰竭心脏中会受到抑制。虽然收缩力增强涉及肌浆钙瞬变增加,但肌丝也会发生适应性变化以增强钙信号的转导。因此,人们发现心室收缩力与蛋白激酶A(PKA)介导的两种肌原纤维蛋白——心肌肌球蛋白结合蛋白-C(cMyBP-C)和心肌肌钙蛋白I(cTnI)的磷酸化密切相关,这表明这两种蛋白是血流动力学向心肌肌节传递信息的重要转导分子。与此一致的是,我们之前发现,PKA(β-肾上腺素能系统的下游信号分子)对肌丝蛋白的磷酸化增加了大鼠去表皮心肌细胞标本的张力、减缓了张力发展速度、加快了负荷下的缩短速度并提高了功率输出。在此,我们试图确定PKA介导的磷酸化调节这些收缩特性的分子特异性机制。关于cTnI,在去表皮心肌细胞中,含有未磷酸化cTnI的细肌丝的掺入降低了等长收缩力的产生,而PKA介导的磷酸化可逆转这些变化。此外,未磷酸化cTnI的掺入加快了张力发展速度,这表明细肌丝激活的协同性降低,并且进入循环横桥池的非循环横桥的募集减少,这一过程往往会降低心肌细胞的张力和功率。关于MyBP-C,PKA处理慢肌骨骼肌纤维会导致MyBP-C(而非慢肌骨骼肌肌钙蛋白I(ssTnI))磷酸化,并产生更快的负荷下缩短速度以及功率输出增加约30%。这些结果为β-肾上腺素能系统调节肌原纤维收缩力的分子特异性以及PKA诱导的cMyBP-C和cTnI磷酸化减弱如何导致心室泵功能衰竭提供了新的见解。

相似文献

1
Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.
Arch Biochem Biophys. 2016 Jul 1;601:22-31. doi: 10.1016/j.abb.2016.01.019. Epub 2016 Feb 15.
2
Cardiac Myosin-binding Protein C and Troponin-I Phosphorylation Independently Modulate Myofilament Length-dependent Activation.
J Biol Chem. 2015 Dec 4;290(49):29241-9. doi: 10.1074/jbc.M115.686790. Epub 2015 Oct 9.
3
N-terminal phosphorylation of cardiac troponin-I reduces length-dependent calcium sensitivity of contraction in cardiac muscle.
J Physiol. 2013 Jan 15;591(2):475-90. doi: 10.1113/jphysiol.2012.241604. Epub 2012 Nov 5.
5
Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes.
Am J Physiol Heart Circ Physiol. 2009 May;296(5):H1524-31. doi: 10.1152/ajpheart.00864.2008. Epub 2009 Feb 27.
6
Molecular regulation of stretch activation.
Am J Physiol Cell Physiol. 2022 Dec 1;323(6):C1728-C1739. doi: 10.1152/ajpcell.00101.2022. Epub 2022 Oct 24.
7
Protein kinase C depresses cardiac myocyte power output and attenuates myofilament responses induced by protein kinase A.
J Muscle Res Cell Motil. 2012 Dec;33(6):439-48. doi: 10.1007/s10974-012-9294-9. Epub 2012 Apr 22.
8
Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C.
J Gen Physiol. 2019 May 6;151(5):645-659. doi: 10.1085/jgp.201812200. Epub 2019 Jan 31.
9
Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts.
J Gen Physiol. 2023 May 1;155(5). doi: 10.1085/jgp.202213290. Epub 2023 Mar 31.

引用本文的文献

1
Myocardial SERCA2 Protects Against Cardiac Damage and Dysfunction Caused by Inhaled Bromine.
J Pharmacol Exp Ther. 2024 Jun 21;390(1):146-158. doi: 10.1124/jpet.123.002084.
2
Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts.
J Gen Physiol. 2023 May 1;155(5). doi: 10.1085/jgp.202213290. Epub 2023 Mar 31.
3
Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs.
Exp Mol Med. 2023 Mar;55(3):502-509. doi: 10.1038/s12276-023-00953-x. Epub 2023 Mar 1.
4
The lack of Troponin I Ser-23/24 phosphorylation is detrimental to in vivo cardiac function and exacerbates cardiac disease.
J Mol Cell Cardiol. 2023 Mar;176:84-96. doi: 10.1016/j.yjmcc.2023.01.010. Epub 2023 Jan 29.
6
Molecular regulation of stretch activation.
Am J Physiol Cell Physiol. 2022 Dec 1;323(6):C1728-C1739. doi: 10.1152/ajpcell.00101.2022. Epub 2022 Oct 24.
8
Study on the interaction of L. centrin and melittin.
RSC Adv. 2021 Nov 9;11(57):36098-36104. doi: 10.1039/d1ra06627g. eCollection 2021 Nov 4.
9
Human cardiac myosin-binding protein C phosphorylation- and mutation-dependent structural dynamics monitored by time-resolved FRET.
J Mol Cell Cardiol. 2022 May;166:116-126. doi: 10.1016/j.yjmcc.2022.02.005. Epub 2022 Feb 25.
10
The Potential of Hsp90 in Targeting Pathological Pathways in Cardiac Diseases.
J Pers Med. 2021 Dec 16;11(12):1373. doi: 10.3390/jpm11121373.

本文引用的文献

3
Titin-mediated control of cardiac myofibrillar function.
Arch Biochem Biophys. 2014 Jun 15;552-553:83-91. doi: 10.1016/j.abb.2013.11.005. Epub 2013 Nov 20.
4
Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24.
J Physiol. 2013 Sep 15;591(18):4535-47. doi: 10.1113/jphysiol.2013.258400. Epub 2013 Jul 8.
5
Integration of troponin I phosphorylation with cardiac regulatory networks.
Circ Res. 2013 Jan 18;112(2):355-66. doi: 10.1161/CIRCRESAHA.112.268672.
6
7
Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation.
Arch Biochem Biophys. 2013 Jul 1;535(1):30-8. doi: 10.1016/j.abb.2012.11.010. Epub 2012 Dec 8.
8
Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart.
Circulation. 2012 Oct 9;126(15):1828-37. doi: 10.1161/CIRCULATIONAHA.112.096388. Epub 2012 Sep 12.
9
Molecular mechanics of cardiac myosin-binding protein C in native thick filaments.
Science. 2012 Sep 7;337(6099):1215-8. doi: 10.1126/science.1223602. Epub 2012 Aug 23.
10
Myosin binding protein-C phosphorylation is the principal mediator of protein kinase A effects on thick filament structure in myocardium.
J Mol Cell Cardiol. 2012 Nov;53(5):609-16. doi: 10.1016/j.yjmcc.2012.07.012. Epub 2012 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验