Suppr超能文献

肌球蛋白结合蛋白 C Ser282 磷酸化对心肌收缩力和体内心脏收缩性能的贡献。

The contribution of cardiac myosin binding protein-c Ser282 phosphorylation to the rate of force generation and in vivo cardiac contractility.

机构信息

Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.

Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA

出版信息

J Physiol. 2014 Sep 1;592(17):3747-65. doi: 10.1113/jphysiol.2014.276022. Epub 2014 Jun 20.

Abstract

Cardiac myosin binding protein-C phosphorylation plays an important role in modulating cardiac muscle function and accelerating contraction. It has been proposed that Ser282 phosphorylation may serve as a critical molecular switch that regulates the phosphorylation of neighbouring Ser273 and Ser302 residues, and thereby govern myofilament contractile acceleration in response to protein kinase A (PKA). Therefore, to determine the regulatory roles of Ser282 we generated a transgenic (TG) mouse model expressing cardiac myosin binding protein-C with a non-phosphorylatable Ser282 (i.e. serine to alanine substitution, TG(S282A)). Myofibrils isolated from TG(S282A) hearts displayed robust PKA-mediated phosphorylation of Ser273 and Ser302, and the increase in phosphorylation was identical to TG wild-type (TG(WT)) controls. No signs of pathological cardiac hypertrophy were detected in TG(S282A) hearts by either histological examination of cardiac sections or echocardiography. Baseline fractional shortening, ejection fraction, isovolumic relaxation time, rate of pressure development and rate of relaxation (τ) were unaltered in TG(S282A) mice. However, the increase in cardiac contractility as well as the acceleration of pressure development observed in response to β-adrenergic stimulation was attenuated in TG(S282A) mice. In agreement with our in vivo data, in vitro force measurements revealed that PKA-mediated acceleration of cross-bridge kinetics in TG(S282A) myocardium was significantly attenuated compared to TG(WT) myocardium. Taken together, our data suggest that while Ser282 phosphorylation does not regulate the phosphorylation of neighbouring Ser residues and basal cardiac function, full acceleration of cross-bridge kinetics and left ventricular pressure development cannot be achieved in its absence.

摘要

肌球蛋白结合蛋白 C 的丝氨酸 282 磷酸化在调节心肌功能和加速收缩中发挥重要作用。有人提出,丝氨酸 282 的磷酸化可能作为一个关键的分子开关,调节邻近丝氨酸 273 和丝氨酸 302 残基的磷酸化,从而控制肌球蛋白丝滑动的加速,以响应蛋白激酶 A(PKA)。因此,为了确定丝氨酸 282 的调节作用,我们生成了一个表达肌球蛋白结合蛋白 C 的转基因(TG)小鼠模型,该蛋白中的丝氨酸 282 不能磷酸化(即丝氨酸突变为丙氨酸,TG[S282A])。从 TG[S282A]心脏分离的肌原纤维显示出 PKA 介导的丝氨酸 273 和丝氨酸 302 的强烈磷酸化,并且磷酸化的增加与 TG 野生型(TG[WT])对照相同。在 TG[S282A]心脏中,通过对心脏切片的组织学检查或超声心动图均未发现病理性心肌肥厚的迹象。TG[S282A]小鼠的基础节段缩短率、射血分数、等容舒张时间、压力发展速度和弛豫速度(τ)均未改变。然而,在β肾上腺素能刺激下观察到的心脏收缩力的增加以及压力发展速度的加速在 TG[S282A]小鼠中减弱。与我们的体内数据一致,体外力测量显示,PKA 介导的 TG[S282A]心肌中横桥动力学的加速与 TG[WT]心肌相比明显减弱。综上所述,我们的数据表明,虽然丝氨酸 282 的磷酸化不调节邻近丝氨酸残基的磷酸化和基础心脏功能,但在其不存在的情况下,无法实现横桥动力学和左心室压力发展的完全加速。

相似文献

3
Cardiac myosin binding protein-C Ser phosphorylation regulates cardiac β-adrenergic reserve.
Sci Adv. 2017 Mar 10;3(3):e1602445. doi: 10.1126/sciadv.1602445. eCollection 2017 Mar.
4
5
Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C During Increased Pacing Frequency or β1-Adrenergic Stimulation.
Circ Heart Fail. 2015 May;8(3):595-604. doi: 10.1161/CIRCHEARTFAILURE.114.001585. Epub 2015 Mar 4.
6
Cardiac function is regulated by B56α-mediated targeting of protein phosphatase 2A (PP2A) to contractile relevant substrates.
J Biol Chem. 2014 Dec 5;289(49):33862-73. doi: 10.1074/jbc.M114.598938. Epub 2014 Oct 15.
7
A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function.
Circ Res. 2011 Jul 8;109(2):141-50. doi: 10.1161/CIRCRESAHA.111.242560. Epub 2011 May 19.
8
Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation.
Front Physiol. 2016 Feb 15;7:38. doi: 10.3389/fphys.2016.00038. eCollection 2016.
9
Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output.
J Appl Physiol (1985). 2017 Mar 1;122(3):520-530. doi: 10.1152/japplphysiol.00306.2016. Epub 2016 Dec 1.
10
Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1355-E1364. doi: 10.1073/pnas.1614020114. Epub 2017 Feb 6.

引用本文的文献

1
cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations.
Front Cardiovasc Med. 2025 Feb 26;12:1550649. doi: 10.3389/fcvm.2025.1550649. eCollection 2025.
2
Differential effects of myosin activators on myocardial contractile function in nonfailing and failing human hearts.
Am J Physiol Heart Circ Physiol. 2025 Jan 1;328(1):H161-H173. doi: 10.1152/ajpheart.00252.2024. Epub 2024 Oct 25.
3
Effect of the Novel Myotrope Danicamtiv on Cross-Bridge Behavior in Human Myocardium.
J Am Heart Assoc. 2023 Oct 17;12(20):e030682. doi: 10.1161/JAHA.123.030682. Epub 2023 Oct 7.
4
The contribution of N-terminal truncated cMyBPC to in vivo cardiac function.
J Gen Physiol. 2023 Jun 5;155(6). doi: 10.1085/jgp.202213318. Epub 2023 Apr 17.
5
Molecular regulation of stretch activation.
Am J Physiol Cell Physiol. 2022 Dec 1;323(6):C1728-C1739. doi: 10.1152/ajpcell.00101.2022. Epub 2022 Oct 24.
8
AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice.
JCI Insight. 2020 Sep 3;5(17):130182. doi: 10.1172/jci.insight.130182.
9
Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery.
Expert Opin Drug Discov. 2020 Apr;15(4):457-469. doi: 10.1080/17460441.2020.1722637. Epub 2020 Feb 18.

本文引用的文献

1
Phosphorylation of cMyBP-C affects contractile mechanisms in a site-specific manner.
Biophys J. 2014 Mar 4;106(5):1112-22. doi: 10.1016/j.bpj.2014.01.029.
2
Cardiac myosin-binding protein-C is a critical mediator of diastolic function.
Pflugers Arch. 2014 Mar;466(3):451-7. doi: 10.1007/s00424-014-1442-1. Epub 2014 Jan 19.
3
Functional dissection of myosin binding protein C phosphorylation.
J Mol Cell Cardiol. 2013 Nov;64:39-50. doi: 10.1016/j.yjmcc.2013.08.006. Epub 2013 Aug 31.
4
Impaired contractile function due to decreased cardiac myosin binding protein C content in the sarcomere.
Am J Physiol Heart Circ Physiol. 2013 Jul 1;305(1):H52-65. doi: 10.1152/ajpheart.00929.2012. Epub 2013 May 10.
6
Molecular mechanics of cardiac myosin-binding protein C in native thick filaments.
Science. 2012 Sep 7;337(6099):1215-8. doi: 10.1126/science.1223602. Epub 2012 Aug 23.
7
In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice.
Circ Heart Fail. 2012 Sep 1;5(5):635-44. doi: 10.1161/CIRCHEARTFAILURE.112.968941. Epub 2012 Aug 1.
8
Myosin binding protein-C phosphorylation is the principal mediator of protein kinase A effects on thick filament structure in myocardium.
J Mol Cell Cardiol. 2012 Nov;53(5):609-16. doi: 10.1016/j.yjmcc.2012.07.012. Epub 2012 Jul 28.
9
Length and PKA Dependence of Force Generation and Loaded Shortening in Porcine Cardiac Myocytes.
Biochem Res Int. 2012;2012:371415. doi: 10.1155/2012/371415. Epub 2012 Jul 5.
10
The extent of cardiac myosin binding protein-C phosphorylation modulates actomyosin function in a graded manner.
J Muscle Res Cell Motil. 2012 Dec;33(6):449-59. doi: 10.1007/s10974-012-9312-y. Epub 2012 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验