Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
J Physiol. 2014 Sep 1;592(17):3747-65. doi: 10.1113/jphysiol.2014.276022. Epub 2014 Jun 20.
Cardiac myosin binding protein-C phosphorylation plays an important role in modulating cardiac muscle function and accelerating contraction. It has been proposed that Ser282 phosphorylation may serve as a critical molecular switch that regulates the phosphorylation of neighbouring Ser273 and Ser302 residues, and thereby govern myofilament contractile acceleration in response to protein kinase A (PKA). Therefore, to determine the regulatory roles of Ser282 we generated a transgenic (TG) mouse model expressing cardiac myosin binding protein-C with a non-phosphorylatable Ser282 (i.e. serine to alanine substitution, TG(S282A)). Myofibrils isolated from TG(S282A) hearts displayed robust PKA-mediated phosphorylation of Ser273 and Ser302, and the increase in phosphorylation was identical to TG wild-type (TG(WT)) controls. No signs of pathological cardiac hypertrophy were detected in TG(S282A) hearts by either histological examination of cardiac sections or echocardiography. Baseline fractional shortening, ejection fraction, isovolumic relaxation time, rate of pressure development and rate of relaxation (τ) were unaltered in TG(S282A) mice. However, the increase in cardiac contractility as well as the acceleration of pressure development observed in response to β-adrenergic stimulation was attenuated in TG(S282A) mice. In agreement with our in vivo data, in vitro force measurements revealed that PKA-mediated acceleration of cross-bridge kinetics in TG(S282A) myocardium was significantly attenuated compared to TG(WT) myocardium. Taken together, our data suggest that while Ser282 phosphorylation does not regulate the phosphorylation of neighbouring Ser residues and basal cardiac function, full acceleration of cross-bridge kinetics and left ventricular pressure development cannot be achieved in its absence.
肌球蛋白结合蛋白 C 的丝氨酸 282 磷酸化在调节心肌功能和加速收缩中发挥重要作用。有人提出,丝氨酸 282 的磷酸化可能作为一个关键的分子开关,调节邻近丝氨酸 273 和丝氨酸 302 残基的磷酸化,从而控制肌球蛋白丝滑动的加速,以响应蛋白激酶 A(PKA)。因此,为了确定丝氨酸 282 的调节作用,我们生成了一个表达肌球蛋白结合蛋白 C 的转基因(TG)小鼠模型,该蛋白中的丝氨酸 282 不能磷酸化(即丝氨酸突变为丙氨酸,TG[S282A])。从 TG[S282A]心脏分离的肌原纤维显示出 PKA 介导的丝氨酸 273 和丝氨酸 302 的强烈磷酸化,并且磷酸化的增加与 TG 野生型(TG[WT])对照相同。在 TG[S282A]心脏中,通过对心脏切片的组织学检查或超声心动图均未发现病理性心肌肥厚的迹象。TG[S282A]小鼠的基础节段缩短率、射血分数、等容舒张时间、压力发展速度和弛豫速度(τ)均未改变。然而,在β肾上腺素能刺激下观察到的心脏收缩力的增加以及压力发展速度的加速在 TG[S282A]小鼠中减弱。与我们的体内数据一致,体外力测量显示,PKA 介导的 TG[S282A]心肌中横桥动力学的加速与 TG[WT]心肌相比明显减弱。综上所述,我们的数据表明,虽然丝氨酸 282 的磷酸化不调节邻近丝氨酸残基的磷酸化和基础心脏功能,但在其不存在的情况下,无法实现横桥动力学和左心室压力发展的完全加速。