Suppr超能文献

使用定量构效关系(QSPR)建模方法预测多种药物化学品与人类血清血浆蛋白的结合亲和力。

Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches.

作者信息

Basant N, Gupta S, Singh K P

机构信息

a ETRC , Gomtinagar, Lucknow , India.

b Environmental Chemistry Division , CSIR-Indian Institute of Toxicology Research , Lucknow , India.

出版信息

SAR QSAR Environ Res. 2016;27(1):67-85. doi: 10.1080/1062936X.2015.1133700.

Abstract

The prediction of the plasma protein binding (PPB) affinity of chemicals is of paramount significance in the drug development process. In this study, ensemble machine learning-based QSPR models have been established for a four-category classification and PPB affinity prediction of diverse compounds using a large PPB dataset of 930 compounds and in accordance with the OECD guidelines. The structural diversity of the chemicals was tested by the Tanimoto similarity index. The external predictive power of the developed QSPR models was evaluated through internal and external validations. In the QSPR models, XLogP was the most important descriptor. In the test data, the classification QSPR models rendered an accuracy of >93%, while the regression QSPR models yielded r(2) of >0.920 between the measured and predicted PPB affinities, with the root mean squared error <9.77. Values of statistical coefficients derived for the test data were above their threshold limits, thus put a high confidence in this analysis. The QSPR models in this study performed better than any of the previous studies. The results suggest that the developed QSPR models are reliable for predicting the PPB affinity of structurally diverse chemicals. They can be useful for initial screening of candidate molecules in the drug development process.

摘要

预测化学物质的血浆蛋白结合(PPB)亲和力在药物开发过程中至关重要。在本研究中,使用包含930种化合物的大型PPB数据集,并按照经合组织指南,建立了基于集成机器学习的QSPR模型,用于对多种化合物进行四类分类和PPB亲和力预测。通过Tanimoto相似性指数测试了化学物质的结构多样性。通过内部和外部验证评估了所开发QSPR模型的外部预测能力。在QSPR模型中,XLogP是最重要的描述符。在测试数据中,分类QSPR模型的准确率>93%,而回归QSPR模型在测量的和预测的PPB亲和力之间产生的r(2)>0.920,均方根误差<9.77。测试数据得出的统计系数值高于其阈值,因此对该分析有很高的置信度。本研究中的QSPR模型比以往任何研究都表现得更好。结果表明,所开发的QSPR模型对于预测结构多样的化学物质的PPB亲和力是可靠的。它们可用于药物开发过程中候选分子的初步筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验