Bour Amy L, Walker Brett D, Broek Taylor A B, McCarthy Matthew D
Ocean Sciences Department, University of California, Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States.
Keck Carbon Cycle AMS Laboratory, University of California, Irvine , 2212 Croul Hall, Irvine, California 92697, United States.
Anal Chem. 2016 Apr 5;88(7):3521-8. doi: 10.1021/acs.analchem.5b03619. Epub 2016 Mar 9.
Compound-specific radiocarbon analysis (CSRA) of amino acids (AAs) is of great interest as a proxy for organic nitrogen (N) cycling rates, dating archeological bone collagen, and investigating processes shaping the biogeochemistry of global N reservoirs. However, recoverable quantities of individual compounds from natural samples are often insufficient for radiocarbon ((14)C) analyses (<50 μg C). Constraining procedural carbon (C) blanks and their isotopic contributions is critical for reporting of accurate CSRA measurements. Here, we report the first detailed quantification of C blanks (including sources, magnitudes, and variability) for a high-pressure liquid chromatography (HPLC) method designed to purify individual AAs from natural samples. We used pairs of AA standards with either modern (M) or dead (D) fraction modern (Fm) values to quantify MC and DC blanks within several chromatographic regions. Blanks were determined for both individual and mixed AA standard injections with peak loadings ranging from 10 to 85 μg C. We found 0.8 ± 0.4 μg of MC and 1.0 ± 0.5 μg of DC were introduced by downstream sample preparation (drying, combustion, and graphitization), which accounted for essentially the entire procedural blank for early eluting AAs. For late-eluting AAs, higher eluent organic content and fraction collected volumes contributed to total blanks of 1.5 ± 0.75 μg of MC and 3.0 ± 1.5 μg of DC. Our final measurement uncertainty for 20 μg of C of most AAs was ±0.02 Fm, although sample size requirements are larger for similar uncertainty in late-eluting AAs. These results demonstrate the first CSRA protocol for many protein AAs with uncertainties comparable to the lowest achieved in prior studies.
氨基酸的化合物特异性放射性碳分析(CSRA)作为有机氮(N)循环速率的替代指标、测定考古骨胶原蛋白年代以及研究影响全球氮库生物地球化学过程的方法,备受关注。然而,从天然样品中可回收的单个化合物数量往往不足以进行放射性碳(¹⁴C)分析(<50μg C)。限制程序碳(C)空白及其同位素贡献对于准确报告CSRA测量结果至关重要。在此,我们报告了一种高压液相色谱(HPLC)方法的C空白(包括来源、大小和变异性)的首次详细量化,该方法旨在从天然样品中纯化单个氨基酸。我们使用具有现代(M)或死(D)现代分数(Fm)值的氨基酸标准品对,以量化几个色谱区域内的MC和DC空白。对单个和混合氨基酸标准品进样进行了空白测定,峰负载量范围为10至85μg C。我们发现下游样品制备(干燥、燃烧和石墨化)引入了0.8±0.4μg的MC和1.0±0.5μg的DC,这基本上占了早期洗脱氨基酸整个程序空白的全部。对于晚期洗脱氨基酸,较高的洗脱液有机含量和收集的馏分体积导致总空白为1.5±0.75μg的MC和3.0±1.5μg的DC。我们对大多数氨基酸20μg C的最终测量不确定度为±0.02 Fm,尽管对于晚期洗脱氨基酸,要达到类似的不确定度需要更大的样品量。这些结果证明了许多蛋白质氨基酸的首个CSRA方案,其不确定度与先前研究中达到的最低值相当。