Nouara Amel, Panagiotopoulos Christos, Balesdent Jérôme, Violaki Kalliopi, Bard Edouard, Fagault Yoann, Repeta Daniel James, Sempéré Richard
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
Anal Chim Acta. 2019 Aug 27;1067:137-146. doi: 10.1016/j.aca.2019.03.028. Epub 2019 Mar 18.
Carbohydrates are among the most abundant organic molecules in both aquatic and terrestrial ecosystems; however, very few studies have addressed their isotopic signature using compound-specific isotope analysis, which provides additional information on their origin (δC) and fate (ΔC). In this study, semi-preparative liquid chromatography with refractive index detection (HPLC-RI) was employed to produce pure carbohydrate targets for subsequent offline δC and ΔC isotopic analysis. δC analysis was performed by elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) whereas ΔC analysis was performed by an innovative measurement procedure based on the direct combustion of the isolated fractions using an elemental analyzer coupled to the gas source of a mini carbon dating system (AixMICADAS). In general, four successive purifications with Na, Ca, Pb, and Ca cation-exchange columns were sufficient to produce pure carbohydrates. These carbohydrates were subsequently identified using mass spectrometry by comparing their mass spectra with those of authentic standards. The applicability of the proposed method was tested on two different environmental samples comprising marine particulate organic matter (POM) and total suspended atmospheric particles (TSP). The obtained results revealed that for the marine POM sample, the δC values of the individual carbohydrates ranged from -18.5 to -16.8‰, except for levoglucosan and mannosan, which presented values of -27.2 and -26.2‰, respectively. For the TSP sample, the δC values ranged from -26.4 to -25.0‰. The galactose and glucose ΔC values were 19 and 43‰, respectively, for the POM sample. On the other hand, the levoglucosan radiocarbon value was 33‰ for the TSP sample. These results suggest that these carbohydrates exhibit a modern age in both of these samples. Radiocarbon HPLC collection window blanks, measured after the addition of phthalic acid (C free blank), ranged from -988 to -986‰ for the abovementioned compounds, indicating a very small background isotopic influence from the whole purification procedure. Overall, the proposed method does not require derivatization steps, produces extremely low blanks, and may be applied to different types of environmental samples.
碳水化合物是水生和陆地生态系统中最丰富的有机分子之一;然而,很少有研究使用化合物特异性同位素分析来研究它们的同位素特征,该分析可提供有关其来源(δC)和归宿(ΔC)的额外信息。在本研究中,采用带折光率检测的半制备液相色谱法(HPLC-RI)制备纯碳水化合物目标物,用于后续的离线δC和ΔC同位素分析。δC分析通过元素分析仪-同位素比率质谱仪(EA-IRMS)进行,而ΔC分析则通过一种创新的测量程序进行,该程序基于使用与微型碳年代测定系统(AixMICADAS)的气体源相连的元素分析仪对分离出的馏分进行直接燃烧。一般来说,用钠、钙、铅和钙阳离子交换柱进行四次连续纯化足以制备纯碳水化合物。随后通过将这些碳水化合物的质谱与标准品的质谱进行比较,利用质谱对其进行鉴定。所提出的方法在包含海洋颗粒有机物(POM)和总悬浮大气颗粒(TSP)的两种不同环境样品上进行了测试。所得结果表明,对于海洋POM样品,除左旋葡聚糖和甘露聚糖的δC值分别为-27.2‰和-26.2‰外,单个碳水化合物的δC值范围为-18.5至-16.8‰。对于TSP样品,δC值范围为-26.4至-25.0‰。POM样品中半乳糖和葡萄糖的ΔC值分别为19‰和43‰。另一方面,TSP样品中左旋葡聚糖的放射性碳值为33‰。这些结果表明,这些碳水化合物在这两种样品中均呈现现代年龄。在添加邻苯二甲酸(无碳空白)后测量的放射性碳HPLC收集窗口空白,上述化合物的范围为-988至-986‰,表明整个纯化过程的背景同位素影响非常小。总体而言,所提出的方法不需要衍生化步骤,产生的空白极低,并且可应用于不同类型的环境样品。