Suppr超能文献

使用MT区的皮质内记录来检验功能磁共振成像适应背后的假设。

Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT.

作者信息

Kar Kohitij, Krekelberg Bart

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University - Newark, Newark, USA.

Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, USA.

出版信息

Cortex. 2016 Jul;80:21-34. doi: 10.1016/j.cortex.2015.12.011. Epub 2016 Jan 19.

Abstract

We investigated how neural activity in the middle temporal area of the macaque monkey changes after 3 sec of exposure to a visual stimulus and used this to gain insight into the assumptions underlying the fMRI adaptation method (fMRIa). We studied both changes in tuning curves following weak and strong motion stimuli (adaptation) and the differences between a first and second exposure to the same stimulus (repetition suppression). Typically, tuning curves had smaller amplitudes and narrower tuning widths after strong adaptation; this was true for single neurons, multi-unit activity (MUA), the evoked local field potential (LFP), as well as gamma band activity. Repetition typically led to reduced responses. This reduction was correlated with direction selectivity and not explained by neural fatigue. Our data, however, warn against a simplistic view of the consequences of adaptation. First, a considerable fraction of neurons and sites showed response enhancements after adaptation, especially when probed with a stimulus that moved opposite to the direction of the adapting stimulus. Second, adaptation was stimulus selective only on a time scale of ∼100 msec. Third, aggregate measures of neural activity (MUA, LFPs) had substantially different adaptation effects. Fourth, there were qualitative differences between our findings in MT and earlier findings in IT cortex. We conclude that selective adaptation effects in fMRIa are relatively easy to miss even when they exist (for instance by presenting stimuli for too long, or because neurons that enhance after adaptation cancel out the effect of neurons that suppress). Moreover, we argue that adaptation should be understood in the context of the computations that a neural circuit perform. Using fMRIa as a tool to uncover neural selectivity requires a better understanding of this circuitry and its consequences for adaptation.

摘要

我们研究了猕猴颞中区的神经活动在暴露于视觉刺激3秒后如何变化,并以此来深入了解功能磁共振成像适应方法(fMRIa)背后的假设。我们研究了在弱运动刺激和强运动刺激后调谐曲线的变化(适应)以及对同一刺激的首次和第二次暴露之间的差异(重复抑制)。通常,在强适应后,调谐曲线的幅度较小且调谐宽度较窄;单个神经元、多单位活动(MUA)、诱发的局部场电位(LFP)以及伽马波段活动均是如此。重复通常会导致反应减弱。这种减弱与方向选择性相关,而非由神经疲劳所致。然而,我们的数据警示不要对适应的后果持过于简单的看法。首先,相当一部分神经元和位点在适应后表现出反应增强,尤其是当用与适应刺激方向相反的刺激进行探测时。其次,适应仅在约100毫秒的时间尺度上具有刺激选择性。第三,神经活动的总体测量指标(MUA、LFP)具有显著不同的适应效应。第四,我们在MT区的发现与早期在IT皮层的发现存在质的差异。我们得出结论,即使fMRIa中的选择性适应效应存在(例如由于刺激呈现时间过长,或者因为适应后增强的神经元抵消了抑制的神经元的效应),也相对容易被忽视。此外,我们认为应该在神经回路执行的计算背景下理解适应。将fMRIa用作揭示神经选择性的工具需要更好地理解这种神经回路及其对适应的影响。

相似文献

1
Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT.
Cortex. 2016 Jul;80:21-34. doi: 10.1016/j.cortex.2015.12.011. Epub 2016 Jan 19.
3
Local field potential in cortical area MT: stimulus tuning and behavioral correlations.
J Neurosci. 2006 Jul 26;26(30):7779-90. doi: 10.1523/JNEUROSCI.5052-05.2006.
4
Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli.
Nat Neurosci. 2005 May;8(5):591-3. doi: 10.1038/nn1446. Epub 2005 Apr 17.
5
Effects of adaptation on the stimulus selectivity of macaque inferior temporal spiking activity and local field potentials.
Cereb Cortex. 2010 Sep;20(9):2145-65. doi: 10.1093/cercor/bhp277. Epub 2009 Dec 27.
6
Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
J Neurosci. 2015 Jul 15;35(28):10268-80. doi: 10.1523/JNEUROSCI.1418-11.2015.
7
Adaptation changes the direction tuning of macaque MT neurons.
Nat Neurosci. 2004 Jul;7(7):764-72. doi: 10.1038/nn1267. Epub 2004 Jun 13.
9
Adaptation to speed in macaque middle temporal and medial superior temporal areas.
J Neurosci. 2013 Mar 6;33(10):4359-68. doi: 10.1523/JNEUROSCI.3165-12.2013.

引用本文的文献

1
Adaptation of the inferior temporal neurons and efficient visual processing.
Front Behav Neurosci. 2024 Jul 26;18:1398874. doi: 10.3389/fnbeh.2024.1398874. eCollection 2024.
2
Multilevel fMRI adaptation for spoken word processing in the awake dog brain.
Sci Rep. 2020 Aug 3;10(1):11968. doi: 10.1038/s41598-020-68821-6.
3
Transcranial alternating current stimulation attenuates BOLD adaptation and increases functional connectivity.
J Neurophysiol. 2020 Jan 1;123(1):428-438. doi: 10.1152/jn.00376.2019. Epub 2019 Dec 11.
4
Short-Term Attractive Tilt Aftereffects Predicted by a Recurrent Network Model of Primary Visual Cortex.
Front Syst Neurosci. 2019 Nov 8;13:67. doi: 10.3389/fnsys.2019.00067. eCollection 2019.
5
Strategic deployment of feature-based attentional gain in primate visual cortex.
PLoS Biol. 2019 Aug 6;17(8):e3000387. doi: 10.1371/journal.pbio.3000387. eCollection 2019 Aug.
6
V1 microcircuit dynamics: altered signal propagation suggests intracortical origins for adaptation in response to visual repetition.
J Neurophysiol. 2019 May 1;121(5):1938-1952. doi: 10.1152/jn.00113.2019. Epub 2019 Mar 27.
7
Forward models demonstrate that repetition suppression is best modelled by local neural scaling.
Nat Commun. 2018 Sep 21;9(1):3854. doi: 10.1038/s41467-018-05957-0.
8
Modeling Neural Adaptation in Auditory Cortex.
Front Neural Circuits. 2018 Sep 5;12:72. doi: 10.3389/fncir.2018.00072. eCollection 2018.
9
Multi-Regional Adaptation in Human Auditory Association Cortex.
Front Hum Neurosci. 2017 May 9;11:247. doi: 10.3389/fnhum.2017.00247. eCollection 2017.

本文引用的文献

1
Evidence and Counterevidence in Motion Perception.
Cereb Cortex. 2016 Dec;26(12):4602-4612. doi: 10.1093/cercor/bhv221. Epub 2015 Oct 3.
2
Motion detection based on recurrent network dynamics.
Front Syst Neurosci. 2014 Dec 23;8:239. doi: 10.3389/fnsys.2014.00239. eCollection 2014.
3
Normalization of neuronal responses in cortical area MT across signal strengths and motion directions.
J Neurophysiol. 2014 Sep 15;112(6):1291-306. doi: 10.1152/jn.00700.2013. Epub 2014 Jun 3.
4
Similar adaptation effects in primary visual cortex and area MT of the macaque monkey under matched stimulus conditions.
J Neurophysiol. 2014 Mar;111(6):1203-13. doi: 10.1152/jn.00030.2013. Epub 2013 Dec 26.
5
Neural mechanisms of speed perception: transparent motion.
J Neurophysiol. 2013 Nov;110(9):2007-18. doi: 10.1152/jn.00333.2013. Epub 2013 Aug 7.
6
The complex structure of receptive fields in the middle temporal area.
Front Syst Neurosci. 2013 Mar 6;7:2. doi: 10.3389/fnsys.2013.00002. eCollection 2013.
7
Adaptation improves neural coding efficiency despite increasing correlations in variability.
J Neurosci. 2013 Jan 30;33(5):2108-20. doi: 10.1523/JNEUROSCI.3449-12.2013.
8
Motion noise changes directional interaction between transparently moving stimuli from repulsion to attraction.
PLoS One. 2012;7(11):e48649. doi: 10.1371/journal.pone.0048649. Epub 2012 Nov 6.
9
The influence of surround suppression on adaptation effects in primary visual cortex.
J Neurophysiol. 2012 Jun;107(12):3370-84. doi: 10.1152/jn.00739.2011. Epub 2012 Mar 14.
10
Receptive field positions in area MT during slow eye movements.
J Neurosci. 2011 Jul 20;31(29):10437-44. doi: 10.1523/JNEUROSCI.5590-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验