Suppr超能文献

前列腺癌衍生的cathelicidin相关抗菌肽促进巨噬细胞分化以及未成熟髓系祖细胞向促肿瘤巨噬细胞的极化。

Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages.

作者信息

Cha Ha-Ram, Lee Joo Hyoung, Hensel Jonathan A, Sawant Anandi B, Davis Brittney H, Lee Carnellia M, Deshane Jessy S, Ponnazhagan Selvarangan

机构信息

Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.

Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Prostate. 2016 May;76(7):624-36. doi: 10.1002/pros.23155. Epub 2016 Feb 9.

Abstract

BACKGROUND

A growing body of evidence indicates a positive correlation between expression of human antimicrobial peptide leucin leucin 37 (LL-37) and progression of epithelial cancers, including prostate cancer (PCa). Although the molecular mechanisms for this correlation has not yet been elucidated, the primary function of LL-37 as a chemotactic molecule for innate immune effector cells suggests its possible association in coordinating protumorigenic mechanisms, mediated by tumor-infiltrating immune cells.

METHODS

To investigate protumorigenic role(s) of cathelicidin-related antimicrobial peptide (CRAMP), a murine orthologue of LL-37, the present study compared tumor growth kinetics between mouse PCa cell lines with and without CRAMP expression (TRAMP-C1 and TRAMP-C1(CRAMP-sh) , respectively) in immunocompetent mice. CRAMP-mediated chemotaxis of different innate immune cell types to the tumor microenvironment (TME) was observed in vivo and confirmed by in vitro chemotaxis assay. The role of CRAMP in differentiation and polarization of immature myeloid progenitors (IMPs) to protumorigenic type 2 macrophages (M2) in TME was determined by adoptive transfer of IMPs into mice bearing CRAMP(+) and CRAMP(-) tumors. To differentiate protumorigenic events mediated by tumor-derived CRAMP from host immune cell-derived CRAMP, tumor challenge study was performed in CRAMP-deficient mice. To identify mechanisms of CRAMP function, macrophage colony stimulating factor (M-CSF) and monocyte chemoattractant protein 1 (MCP-1) gene expression was analyzed by QRT-PCR and STAT3 signaling was determined by immunoblotting.

RESULTS

Significantly delayed tumor growth was observed in wild-type (WT) mice implanted with TRAMP-C1(CRAMP-sh) cells compared to mice implanted with TRAMP-C1 cells. CRAMP(+) TME induced increased number of IMP differentiation into protumorigenic M2 macrophages compared to CRAMP(-) TME, indicating tumor-derived CRAMP facilitates differentiation and polarization of IMPs toward M2. Tumor challenge study in CRAMP deficient mice showed comparable tumor growth kinetics with WT mice, suggesting tumor-derived CRAMP plays a crucial role in PCa progression. In vitro study demonstrated that overexpressed M-CSF and MCP-1 in TRAMP-C1 cells through CRAMP-mediated autocrine signaling, involving p65, regulates IMP-to-M2 differentiation/polarization through STAT3 activation.

CONCLUSION

Altogether, the present study suggests that overexpressed CRAMP in prostate tumor initially chemoattracts IMPs to TME and mediates differentiation and polarization of early myeloid progenitors into protumorigenic M2 macrophages during PCa progression. Thus, selective downregulation of CRAMP in tumor cells in situ may benefit overcoming immunosuppressive mechanisms in PCa.

摘要

背景

越来越多的证据表明,人类抗菌肽亮氨酸亮氨酸37(LL-37)的表达与上皮癌(包括前列腺癌,PCa)的进展呈正相关。尽管这种相关性的分子机制尚未阐明,但LL-37作为先天免疫效应细胞趋化分子的主要功能表明,它可能参与协调由肿瘤浸润免疫细胞介导的促肿瘤机制。

方法

为了研究LL-37的小鼠同源物——cathelicidin相关抗菌肽(CRAMP)的促肿瘤作用,本研究比较了在免疫活性小鼠中,有和没有CRAMP表达的小鼠前列腺癌细胞系(分别为TRAMP-C1和TRAMP-C1(CRAMP-sh))之间的肿瘤生长动力学。在体内观察到CRAMP介导的不同先天免疫细胞类型向肿瘤微环境(TME)的趋化作用,并通过体外趋化试验得到证实。通过将未成熟髓系祖细胞(IMPs)过继转移到携带CRAMP(+)和CRAMP(-)肿瘤的小鼠中,确定了CRAMP在TME中IMPs分化和极化为促肿瘤2型巨噬细胞(M2)中的作用。为了区分肿瘤来源的CRAMP和宿主免疫细胞来源的CRAMP介导的促肿瘤事件,在CRAMP缺陷小鼠中进行了肿瘤攻击研究。为了确定CRAMP功能的机制,通过定量逆转录聚合酶链反应(QRT-PCR)分析巨噬细胞集落刺激因子(M-CSF)和单核细胞趋化蛋白1(MCP-1)基因表达,并通过免疫印迹法确定信号转导和转录激活因子3(STAT3)信号传导。

结果

与植入TRAMP-C1细胞的小鼠相比,植入TRAMP-C1(CRAMP-sh)细胞的野生型(WT)小鼠的肿瘤生长明显延迟。与CRAMP(-) TME相比,CRAMP(+) TME诱导更多的IMPs分化为促肿瘤M2巨噬细胞,表明肿瘤来源的CRAMP促进IMPs向M2的分化和极化。在CRAMP缺陷小鼠中进行的肿瘤攻击研究显示,其肿瘤生长动力学与WT小鼠相当,表明肿瘤来源的CRAMP在PCa进展中起关键作用。体外研究表明,TRAMP-C1细胞中通过CRAMP介导的自分泌信号(涉及p65)使M-CSF和MCP-1过表达,通过激活STAT3调节IMPs向M2的分化/极化。

结论

总之,本研究表明,前列腺肿瘤中过表达的CRAMP最初将IMPs趋化至TME,并在PCa进展过程中介导早期髓系祖细胞分化和极化为促肿瘤M2巨噬细胞。因此,原位选择性下调肿瘤细胞中的CRAMP可能有助于克服PCa中的免疫抑制机制。

相似文献

2
LL-37 as a therapeutic target for late stage prostate cancer.
Prostate. 2011 May;71(6):659-70. doi: 10.1002/pros.21282. Epub 2010 Oct 18.
4
Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth.
Oncogene. 2014 May 22;33(21):2709-16. doi: 10.1038/onc.2013.248. Epub 2013 Jul 1.
9
Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages.
Blood. 2012 Oct 11;120(15):3152-62. doi: 10.1182/blood-2012-04-422758. Epub 2012 Aug 23.
10
Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling.
Theranostics. 2019 Apr 12;9(8):2209-2223. doi: 10.7150/thno.30726. eCollection 2019.

引用本文的文献

2
Unleashing the power of peptides in prostate cancer immunotherapy: mechanism, facts and perspectives.
Front Pharmacol. 2025 Feb 26;16:1478331. doi: 10.3389/fphar.2025.1478331. eCollection 2025.
4
Developmental and homeostatic signaling transmitted by the G-protein coupled receptor FPR2.
Int Immunopharmacol. 2023 May;118:110052. doi: 10.1016/j.intimp.2023.110052. Epub 2023 Mar 30.
6
The Roles of Tumor-Associated Macrophages in Prostate Cancer.
J Oncol. 2022 Sep 7;2022:8580043. doi: 10.1155/2022/8580043. eCollection 2022.
7
Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy.
Front Pharmacol. 2022 Aug 23;13:944147. doi: 10.3389/fphar.2022.944147. eCollection 2022.
8
Recent Advances on the Role of ATGL in Cancer.
Front Oncol. 2022 Jul 13;12:944025. doi: 10.3389/fonc.2022.944025. eCollection 2022.
9
The Role of Androgen Receptor in Cross Talk Between Stromal Cells and Prostate Cancer Epithelial Cells.
Front Cell Dev Biol. 2021 Oct 6;9:729498. doi: 10.3389/fcell.2021.729498. eCollection 2021.
10
Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells.
Cancers (Basel). 2021 Jan 6;13(2):165. doi: 10.3390/cancers13020165.

本文引用的文献

1
SOCS3 Deficiency in Myeloid Cells Promotes Tumor Development: Involvement of STAT3 Activation and Myeloid-Derived Suppressor Cells.
Cancer Immunol Res. 2015 Jul;3(7):727-40. doi: 10.1158/2326-6066.CIR-15-0004. Epub 2015 Feb 3.
2
Revisiting STAT3 signalling in cancer: new and unexpected biological functions.
Nat Rev Cancer. 2014 Nov;14(11):736-46. doi: 10.1038/nrc3818.
4
History of myeloid-derived suppressor cells.
Nat Rev Cancer. 2013 Oct;13(10):739-52. doi: 10.1038/nrc3581.
5
M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway.
J Cell Biol. 2013 Sep 16;202(6):951-66. doi: 10.1083/jcb.201301081. Epub 2013 Sep 9.
6
Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches.
FEBS J. 2013 Nov;280(21):5258-68. doi: 10.1111/febs.12509. Epub 2013 Sep 23.
7
Diverse novel functions of neutrophils in immunity, inflammation, and beyond.
J Exp Med. 2013 Jul 1;210(7):1283-99. doi: 10.1084/jem.20122220.
8
JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells.
Cancer Res. 2013 Aug 15;73(16):5288-98. doi: 10.1158/0008-5472.CAN-13-0874. Epub 2013 Jul 3.
9
Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth.
Oncogene. 2014 May 22;33(21):2709-16. doi: 10.1038/onc.2013.248. Epub 2013 Jul 1.
10
Myeloid-cell differentiation redefined in cancer.
Nat Immunol. 2013 Mar;14(3):197-9. doi: 10.1038/ni.2539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验