Suppr超能文献

利用尿沉渣中的基因表达诊断前列腺癌:新型多重mRNA尿液检测方法的开发及现有生物标志物的验证

Using gene expression from urine sediment to diagnose prostate cancer: development of a new multiplex mRNA urine test and validation of current biomarkers.

作者信息

Mengual Lourdes, Lozano Juan José, Ingelmo-Torres Mercedes, Izquierdo Laura, Musquera Mireia, Ribal María José, Alcaraz Antonio

机构信息

Laboratory and Department of Urology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.

Laboratory of Urology, Hospital Clínic, Centre de Recerca Biomèdica CELLEX, office B22, C/Casanova, 143, 08036, Barcelona, Spain.

出版信息

BMC Cancer. 2016 Feb 9;16:76. doi: 10.1186/s12885-016-2127-2.

Abstract

BACKGROUND

Additional accurate non-invasive biomarkers are needed in the clinical setting to improve prostate cancer (PCa) diagnosis. Here we have developed a new and improved multiplex mRNA urine test to detect prostate cancer (PCa). Furthermore, we have validated the PCA3 urinary transcript and some panels of urinary transcripts previously reported as useful diagnostic biomarkers for PCa in our cohort.

METHODS

Post-prostatic massage urine samples were prospectively collected from PCa patients and controls. Expression levels of 42 target genes selected from our previous studies and from the literature were studied in 224 post-prostatic massage urine sediments by quantitative PCR. Univariate logistic regression was used to identify individual PCa predictors. A variable selection method was used to develop a multiplex biomarker model. Discrimination was measured by ROC curve AUC for both, our model and the previously published biomarkers.

RESULTS

Seven of the 42 genes evaluated (PCA3, ELF3, HIST1H2BG, MYO6, GALNT3, PHF12 and GDF15) were found to be independent predictors for discriminating patients with PCa from controls. We developed a four-gene expression signature (HIST1H2BG, SPP1, ELF3 and PCA3) with a sensitivity of 77% and a specificity of 67% (AUC = 0.763) for discriminating between tumor and control urines. The accuracy of PCA3 and previously reported panels of biomarkers is roughly maintained in our cohort.

CONCLUSIONS

Our four-gene expression signature outperforms PCA3 as well as previously reported panels of biomarkers to predict PCa risk. This study suggests that a urinary biomarker panel could improve PCa detection. However, the accuracy of the panels of urinary transcripts developed to date, including our signature, is not high enough to warrant using them routinely in a clinical setting.

摘要

背景

临床环境中需要更多准确的非侵入性生物标志物来改善前列腺癌(PCa)的诊断。在此,我们开发了一种新的、改进的多重mRNA尿液检测方法来检测前列腺癌(PCa)。此外,我们还在我们的队列中验证了PCA3尿液转录本以及一些先前报道的对PCa有用的诊断生物标志物的尿液转录本组合。

方法

前瞻性地收集前列腺按摩后排尿样本,来自PCa患者和对照。通过定量PCR研究了从我们之前的研究和文献中选择的42个靶基因在224份前列腺按摩后排尿沉淀物中的表达水平。使用单变量逻辑回归来识别个体PCa预测因子。采用变量选择方法建立多重生物标志物模型。通过ROC曲线AUC测量我们的模型和先前发表的生物标志物的辨别力。

结果

评估的42个基因中有7个(PCA3、ELF3、HIST1H2BG、MYO6、GALNT3、PHF12和GDF15)被发现是区分PCa患者和对照的独立预测因子。我们开发了一种四基因表达特征(HIST1H2BG、SPP1、ELF3和PCA3),用于区分肿瘤尿液和对照尿液的敏感性为77%,特异性为67%(AUC = 0.763)。PCA3和先前报道的生物标志物组合的准确性在我们的队列中大致保持。

结论

我们的四基因表达特征在预测PCa风险方面优于PCA3以及先前报道的生物标志物组合。这项研究表明,尿液生物标志物组合可以改善PCa检测。然而,迄今为止开发的尿液转录本组合,包括我们的特征,其准确性还不够高,不足以保证在临床环境中常规使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e140/4746764/da6ce8ff00cf/12885_2016_2127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验