Bandyopadhyay Sabyasachi, Lysak Nicholas, Adhikari Lasith, Velez Laura M, Sautina Larysa, Mohandas Rajesh, Lopez Maria-Cecilia, Ungaro Ricardo, Peng Ying-Chih, Kadri Ferdous, Efron Philip, Brakenridge Scott, Moldawer Lyle, Moore Frederick, Baker Henry V, Segal Mark S, Ozrazgat-Baslanti Tezcan, Rashidi Parisa, Bihorac Azra
Precision and Intelligent Systems in Medicine (PrismaP), University of Florida, Gainesville, FL.
Department of Surgery, University of Florida, Gainesville, FL.
Crit Care Explor. 2020 Sep 25;2(10):e0195. doi: 10.1097/CCE.0000000000000195. eCollection 2020 Oct.
Identify alterations in gene expression unique to systemic and kidney-specific pathophysiologic processes using whole-genome analyses of RNA isolated from the urinary cells of sepsis patients.
Prospective cohort study.
Quaternary care academic hospital.
A total of 266 sepsis and 82 control patients enrolled between January 2015 and February 2018.
Whole-genome transcriptomic analysis of messenger RNA isolated from the urinary cells of sepsis patients within 12 hours of sepsis onset and from control subjects.
The differentially expressed probes that map to known genes were subjected to feature selection using multiple machine learning techniques to find the best subset of probes that differentiates sepsis from control subjects. Using differential expression augmented with machine learning ensembles, we identified a set of 239 genes in urine, which show excellent effectiveness in classifying septic patients from those with chronic systemic disease in both internal and independent external validation cohorts. Functional analysis indexes disrupted biological pathways in early sepsis and reveal key molecular networks driving its pathogenesis.
We identified unique urinary gene expression profile in early sepsis. Future studies need to confirm whether this approach can complement blood transcriptomic approaches for sepsis diagnosis and prognostication.
通过对脓毒症患者尿细胞中分离出的RNA进行全基因组分析,确定全身和肾脏特异性病理生理过程所特有的基因表达改变。
前瞻性队列研究。
四级医疗学术医院。
2015年1月至2018年2月期间共纳入266例脓毒症患者和82例对照患者。
对脓毒症发作12小时内的脓毒症患者尿细胞以及对照受试者尿细胞中分离出的信使RNA进行全基因组转录组分析。
对映射到已知基因的差异表达探针使用多种机器学习技术进行特征选择,以找到区分脓毒症患者与对照受试者的最佳探针子集。通过机器学习集成增强的差异表达分析,我们在尿液中鉴定出一组239个基因,这些基因在内部和独立外部验证队列中,对区分脓毒症患者和慢性全身性疾病患者均显示出优异的有效性。功能分析指标揭示了早期脓毒症中生物途径的破坏,并揭示了驱动其发病机制的关键分子网络。
我们在早期脓毒症中鉴定出独特的尿液基因表达谱。未来的研究需要确认这种方法是否可以补充血液转录组学方法用于脓毒症的诊断和预后评估。