Suppr超能文献

相似文献

1
Analysis of the functional contributions of Asn233 in metallo-β-lactamase IMP-1.
Antimicrob Agents Chemother. 2011 Dec;55(12):5696-702. doi: 10.1128/AAC.00340-11. Epub 2011 Sep 6.
2
Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
Antimicrob Agents Chemother. 2015 Dec;59(12):7299-307. doi: 10.1128/AAC.01651-15. Epub 2015 Sep 14.
3
Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site.
Antimicrob Agents Chemother. 2012 Nov;56(11):5667-77. doi: 10.1128/AAC.01276-12. Epub 2012 Aug 20.
4
Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
J Biol Chem. 2009 Nov 27;284(48):33703-12. doi: 10.1074/jbc.M109.053819. Epub 2009 Oct 6.
5
Functional analysis of the active site of a metallo-beta-lactamase proliferating in Japan.
Antimicrob Agents Chemother. 2000 Sep;44(9):2304-9. doi: 10.1128/AAC.44.9.2304-2309.2000.
6
Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics.
Antimicrob Agents Chemother. 2003 Mar;47(3):1062-7. doi: 10.1128/AAC.47.3.1062-1067.2003.
9
Substitution of Thr for Ala-237 in TEM-17, TEM-12 and TEM-26: alterations in beta-lactam resistance conferred on Escherichia coli.
FEMS Microbiol Lett. 2001 Jul 10;201(1):37-40. doi: 10.1111/j.1574-6968.2001.tb10729.x.

引用本文的文献

1
The rise and global spread of IMP carbapenemases (1996-2023): a genomic epidemiology study.
medRxiv. 2025 May 26:2025.05.25.25328332. doi: 10.1101/2025.05.25.25328332.
2
Spectrum of cefepime-taniborbactam coverage against 190 β-lactamases defined in engineered isogenic strains.
Antimicrob Agents Chemother. 2025 May 7;69(5):e0169924. doi: 10.1128/aac.01699-24. Epub 2025 Apr 1.
3
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
6
Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding.
Antimicrob Agents Chemother. 2017 Jul 25;61(8). doi: 10.1128/AAC.02602-16. Print 2017 Aug.
9
Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1.
Antimicrob Agents Chemother. 2015 Dec 7;60(2):990-1002. doi: 10.1128/AAC.02017-15. Print 2016 Feb.
10
Crystal Structure of DIM-1, an Acquired Subclass B1 Metallo-β-Lactamase from Pseudomonas stutzeri.
PLoS One. 2015 Oct 9;10(10):e0140059. doi: 10.1371/journal.pone.0140059. eCollection 2015.

本文引用的文献

1
Beyond the target pathogen: ecological effects of the hospital formulary.
Curr Opin Infect Dis. 2011 Feb;24 Suppl 1:S21-31. doi: 10.1097/01.qco.0000393485.17894.4c.
2
Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum TEM β-lactamases.
J Mol Biol. 2010 Dec 17;404(5):832-46. doi: 10.1016/j.jmb.2010.10.008. Epub 2010 Oct 16.
3
Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae.
Curr Opin Microbiol. 2010 Oct;13(5):558-64. doi: 10.1016/j.mib.2010.09.006. Epub 2010 Oct 1.
4
The future of the β-lactams.
Curr Opin Microbiol. 2010 Oct;13(5):551-7. doi: 10.1016/j.mib.2010.09.008. Epub 2010 Sep 29.
5
Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases.
J Antimicrob Chemother. 2010 Sep;65(9):1950-4. doi: 10.1093/jac/dkq259. Epub 2010 Jul 11.
6
Three decades of beta-lactamase inhibitors.
Clin Microbiol Rev. 2010 Jan;23(1):160-201. doi: 10.1128/CMR.00037-09.
7
Updated functional classification of beta-lactamases.
Antimicrob Agents Chemother. 2010 Mar;54(3):969-76. doi: 10.1128/AAC.01009-09. Epub 2009 Dec 7.
10
Has the era of untreatable infections arrived?
J Antimicrob Chemother. 2009 Sep;64 Suppl 1:i29-36. doi: 10.1093/jac/dkp255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验