Suppr超能文献

基于计算转移自由能标度的外膜蛋白折叠与拓扑结构

Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

作者信息

Lin Meishan, Gessmann Dennis, Naveed Hammad, Liang Jie

机构信息

Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States.

出版信息

J Am Chem Soc. 2016 Mar 2;138(8):2592-601. doi: 10.1021/jacs.5b10307. Epub 2016 Feb 19.

Abstract

Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

摘要

了解氨基酸从水溶液转移到脂质双层的自由能,对于理解膜蛋白折叠和预测膜蛋白结构至关重要。在此,我们报告一种计算方法,该方法可通过将经验能量函数与简化的离散状态空间模型相结合,来计算外膜β桶蛋白(OMP)跨膜区域的折叠自由能。我们定量分析了OmpLA脂质双层中心20个氨基酸残基的转移自由能。我们的结果与实验得出的疏水性标度高度吻合。我们进一步详尽计算了OmpLA跨膜区域所有位置20种氨基酸的转移自由能。我们发现革兰氏阴性菌外膜的不对称性以及OMP的跨膜残基决定了其在体内的功能折叠。我们的结果表明,OMP的折叠过程由其疏水核心中面向脂质的残基驱动,其NC-IN拓扑结构由OMP在不对称外膜中的差异稳定性决定。脂质A进一步降低了折叠自由能,并由极性和可电离残基之间存在的一般深度依赖性协同作用辅助。此外,OmpLA中特定位置转移自由能的上下文依赖性预测了对蛋白质功能以及结构异常重要的区域。我们的计算方法快速、高效且适用于任何OMP。

相似文献

1
Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.
J Am Chem Soc. 2016 Mar 2;138(8):2592-601. doi: 10.1021/jacs.5b10307. Epub 2016 Feb 19.
3
Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10174-7. doi: 10.1073/pnas.1103979108. Epub 2011 May 23.
4
Refining the treatment of membrane proteins by coarse-grained models.
Proteins. 2016 Jan;84(1):92-117. doi: 10.1002/prot.24958. Epub 2015 Dec 9.
5
Influence of Protein Scaffold on Side-Chain Transfer Free Energies.
Biophys J. 2017 Aug 8;113(3):597-604. doi: 10.1016/j.bpj.2017.06.032.
6
Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein.
J Biol Chem. 2017 Jul 21;292(29):12351-12365. doi: 10.1074/jbc.M117.789446. Epub 2017 Jun 7.
7
Local Bilayer Hydrophobicity Modulates Membrane Protein Stability.
J Am Chem Soc. 2021 Jan 20;143(2):764-772. doi: 10.1021/jacs.0c09412. Epub 2021 Jan 7.
9
E. coli outer membrane and interactions with OmpLA.
Biophys J. 2014 Jun 3;106(11):2493-502. doi: 10.1016/j.bpj.2014.04.024.
10
Influence of amino acid properties for discriminating outer membrane proteins at better accuracy.
Biochim Biophys Acta. 2006 Sep;1764(9):1493-7. doi: 10.1016/j.bbapap.2006.07.005. Epub 2006 Jul 31.

引用本文的文献

1
Engineering a Hyperstable Outer Membrane Protein Ail Using Thermodynamic Design.
J Am Chem Soc. 2022 Feb 2;144(4):1545-1555. doi: 10.1021/jacs.1c05964. Epub 2022 Jan 21.
2
Local Bilayer Hydrophobicity Modulates Membrane Protein Stability.
J Am Chem Soc. 2021 Jan 20;143(2):764-772. doi: 10.1021/jacs.0c09412. Epub 2021 Jan 7.
4
GeTFEP: A general transfer free energy profile of transmembrane proteins.
Protein Sci. 2020 Feb;29(2):469-479. doi: 10.1002/pro.3763. Epub 2019 Nov 11.
5
Hydrophobic Characteristic Is Energetically Preferred for Cysteine in a Model Membrane Protein.
Biophys J. 2019 Jul 9;117(1):25-35. doi: 10.1016/j.bpj.2019.05.024. Epub 2019 Jun 5.
6
Salvaging the Thermodynamic Destabilization of Interface Histidine in Transmembrane β-Barrels.
Biochemistry. 2018 Dec 4;57(48):6669-6678. doi: 10.1021/acs.biochem.8b00805. Epub 2018 Oct 16.
7
Comparative Analysis of TM and Cytoplasmic β-barrel Conformations Using Joint Descriptor.
Sci Rep. 2018 Sep 21;8(1):14185. doi: 10.1038/s41598-018-32136-4.
9
Folding-Degradation Relationship of a Membrane Protein Mediated by the Universally Conserved ATP-Dependent Protease FtsH.
J Am Chem Soc. 2018 Apr 4;140(13):4656-4665. doi: 10.1021/jacs.8b00832. Epub 2018 Mar 21.
10
High-resolution structure prediction of -barrel membrane proteins.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1511-1516. doi: 10.1073/pnas.1716817115. Epub 2018 Jan 29.

本文引用的文献

1
Electrostatic Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish between Glycosylated Isoforms.
J Phys Chem B. 2015 Aug 13;119(32):10198-206. doi: 10.1021/acs.jpcb.5b06435. Epub 2015 Jul 30.
3
E. coli outer membrane and interactions with OmpLA.
Biophys J. 2014 Jun 3;106(11):2493-502. doi: 10.1016/j.bpj.2014.04.024.
4
Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5878-83. doi: 10.1073/pnas.1322473111. Epub 2014 Apr 8.
5
Nanopore-based identification of individual nucleotides for direct RNA sequencing.
Nano Lett. 2013;13(12):6144-50. doi: 10.1021/nl403469r. Epub 2013 Nov 13.
6
Structural insight into the biogenesis of β-barrel membrane proteins.
Nature. 2013 Sep 19;501(7467):385-90. doi: 10.1038/nature12521. Epub 2013 Sep 1.
8
Charge asymmetry in the proteins of the outer membrane.
Bioinformatics. 2013 Sep 1;29(17):2122-8. doi: 10.1093/bioinformatics/btt355. Epub 2013 Jun 19.
9
Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4285-90. doi: 10.1073/pnas.1212527110. Epub 2013 Feb 25.
10
Folding of outer membrane proteins.
Arch Biochem Biophys. 2013 Mar;531(1-2):34-43. doi: 10.1016/j.abb.2012.10.008. Epub 2012 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验