Suppr超能文献

用于最大化相干反斯托克斯拉曼散射增强的等离子体组件中Fano共振的近场工程

Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements.

作者信息

He Jinna, Fan Chunzhen, Ding Pei, Zhu Shuangmei, Liang Erjun

机构信息

School of Physical Science &Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China.

College of Electric and Information Engineering, Pingdingshan University, Pingdingshan, 467000, China.

出版信息

Sci Rep. 2016 Feb 10;6:20777. doi: 10.1038/srep20777.

Abstract

Surface enhanced coherent anti-Stokes Raman scattering (SECARS) is a sensitive tool and promising for single molecular detection and chemical selective imaging. However, the enhancement factors (EF) were only 10~100 for colloidal silver and gold nanoparticles usually used as SECARS substrates. In this paper, we present a design of SECARS substrate consisting of three asymmetric gold disks and strategies for maximizing the EF by engineering near-field properties of the plasmonic Fano nanoassembly. It is found that the E-field "hot spots" corresponding to three different frequencies involved in SECARS process can be brought to the same spatial locations by tuning incident orientations, giving rise to highly confined SECARS "hot spots" with the EF reaching single-molecule sensitivity. Besides, an even higher EF of SECARS is achieved by introducing double Fano resonances in this plasmonic nanoassembly via further enlarging the sizes of the constituent disks. These findings put an important step forward to the plasmonic substrate design for SECARS as well as for other nonlinear optical processes.

摘要

表面增强相干反斯托克斯拉曼散射(SECARS)是一种灵敏的工具,在单分子检测和化学选择性成像方面具有广阔前景。然而,通常用作SECARS衬底的胶体银和金纳米颗粒的增强因子(EF)仅为10至100。在本文中,我们提出了一种由三个不对称金盘组成的SECARS衬底设计,以及通过设计等离子体法诺纳米组件的近场特性来最大化增强因子的策略。研究发现,通过调整入射方向,可以将与SECARS过程中涉及的三个不同频率相对应的电场“热点”带到相同的空间位置,从而产生高度受限的SECARS“热点”,其增强因子达到单分子灵敏度。此外,通过进一步增大组成盘的尺寸,在该等离子体纳米组件中引入双法诺共振,可实现更高的SECARS增强因子。这些发现为SECARS以及其他非线性光学过程的等离子体衬底设计向前迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f823/4748302/bbf47d85c470/srep20777-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验