Suppr超能文献

基于线性调频脉冲模型的体感诱发电位自动参数化

Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

作者信息

Vayrynen Eero, Noponen Kai, Vipin Ashwati, Thow X Y, Al-Nashash Hasan, Kortelainen Jukka, All Angelo

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 Sep;24(9):981-992. doi: 10.1109/TNSRE.2016.2525829. Epub 2016 Feb 5.

Abstract

In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

摘要

本文提出了一种使用多项式相位啁啾信号对体感诱发电位(SEP)进行建模的方法。SEP波形被假定为在沿多径神经连接传播时经历群速度色散的脉冲。对导致啁啾信号的脉冲色散进行了数学分析。提出了一种使用啁啾模型对SEP进行自动参数化的方法。使用粒子群优化算法对模型参数进行优化。自动导出描述SEP潜伏期和幅度的特征。然后使用大鼠模型在两种实验情况下评估SEP的自动参数化,即麻醉水平和脊髓损伤(SCI)。实验结果表明,基于啁啾的模型参数和导出的SEP特征在描述麻醉水平和SCI变化方面具有重要意义。所提出的基于自动优化提取啁啾参数的方法为未来研究中的详细SEP分析提供了潜力。在线提供了用Matlab技术计算语言实现的该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验