Cherepanova Natalia A, Gilmore Reid
Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester, Massachusetts, 01605,USA.
Sci Rep. 2016 Feb 11;6:20946. doi: 10.1038/srep20946.
Asparagine linked glycosylation of proteins is an essential protein modification reaction in most eukaryotic organisms. Metazoan organisms express two oligosaccharyltransferase complexes that are composed of a catalytic subunit (STT3A or STT3B) assembled with a shared set of accessory subunits and one to two complex specific subunits. siRNA mediated knockdowns of STT3A and STT3B in HeLa cells have shown that the two OST complexes have partially non-overlapping roles in N-linked glycosylation. However, incomplete siRNA mediated depletion of STT3A or STT3B reduces the impact of OST complex loss, thereby complicating the interpretation of experimental results. Here, we have used the CRISPR/Cas9 gene editing technology to create viable HEK293 derived cells lines that are deficient for a single catalytic subunit (STT3A or STT3B) or two STT3B-specific accessory subunits (MagT1 and TUSC3). Analysis of protein glycosylation in the STT3A, STT3B and MagT1/TUSC3 null cell lines revealed that these cell lines are superior tools for investigating the in vivo role and substrate preferences of the STT3A and STT3B complexes.
蛋白质的天冬酰胺连接糖基化是大多数真核生物中一种重要的蛋白质修饰反应。后生动物表达两种寡糖基转移酶复合物,它们由一个催化亚基(STT3A或STT3B)与一组共享的辅助亚基以及一到两个复合物特异性亚基组装而成。在HeLa细胞中,通过小干扰RNA(siRNA)介导敲低STT3A和STT3B,结果表明这两种寡糖基转移酶复合物在N-连接糖基化中具有部分不重叠的作用。然而,siRNA介导的STT3A或STT3B不完全缺失会降低寡糖基转移酶复合物缺失的影响,从而使实验结果的解释变得复杂。在此,我们利用CRISPR/Cas9基因编辑技术创建了源自HEK293的有活力的细胞系,这些细胞系缺失单个催化亚基(STT3A或STT3B)或两个STT3B特异性辅助亚基(MagT1和TUSC3)。对STT3A、STT3B和MagT1/TUSC3基因敲除细胞系中的蛋白质糖基化分析表明,这些细胞系是研究STT3A和STT3B复合物在体内作用及底物偏好的优良工具。