Castro-Alamancos Manuel A, Favero Morgana
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
J Neurophysiol. 2016 May 1;115(5):2265-79. doi: 10.1152/jn.00028.2016. Epub 2016 Feb 10.
Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus.
啮齿动物利用它们的胡须探索环境,而上丘是处理这种感觉运动信息的神经回路的一部分。上丘中间层的细胞整合来自三叉神经复合体的三叉神经-顶盖传入纤维和来自桶状皮层的皮质-顶盖传入纤维。通过在小鼠中使用组织学方法,我们发现三叉神经-顶盖和皮质-顶盖突触在分别支配中间颗粒层的下部和上部时会有一定程度的重叠。通过在麻醉的小鼠体内进行电生理记录和光遗传学实验,我们表明,与大鼠类似,触须偏转产生由三叉神经-顶盖和皮质-顶盖传入纤维驱动的两个连续反应。然后我们采用体内和切片实验来表征这些传入纤维的反应特性。在体内,通过电刺激桶状皮层触发的皮质-顶盖反应会引起上丘的活动,该活动随刺激强度增加而增强,并随频率增加而减弱。在成年小鼠的切片中,对表达通道视紫红质的三叉神经-顶盖和皮质-顶盖纤维进行光遗传学激活发现,中间层的细胞接受的三叉神经-顶盖突触输入比皮质-顶盖突触输入更有效。此外,三叉神经-顶盖输入的功效比皮质-顶盖输入的功效随频率增加而下降得更强烈。上丘的中间层似乎被调整为处理强烈但不频繁的三叉神经输入和微弱但更持久的皮质输入,这解释了感觉反应的特征,例如上丘中触须反应的强大快速感觉适应。