Suppr超能文献

视觉引导步行中的运动序列学习。

Locomotor sequence learning in visually guided walking.

作者信息

Choi Julia T, Jensen Peter, Nielsen Jens Bo

机构信息

Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts; and Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology and Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark

Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology and Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark.

出版信息

J Neurophysiol. 2016 Apr;115(4):2014-20. doi: 10.1152/jn.00938.2015. Epub 2016 Feb 10.

Abstract

Voluntary limb modifications must be integrated with basic walking patterns during visually guided walking. In this study we tested whether voluntary gait modifications can become more automatic with practice. We challenged walking control by presenting visual stepping targets that instructed subjects to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence-nonspecific learning during walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 yr,n= 20) could learn a specific sequence of step lengths over 300 training steps. Younger children (age 6-10 yr,n= 8) had lower baseline performance, but their magnitude and rate of sequence learning were the same compared with those of older children (11-16 yr,n= 10) and healthy adults. In addition, learning capacity may be more limited at faster walking speeds. To our knowledge, this is the first study to demonstrate that spatial sequence learning can be integrated with a highly automatic task such as walking. These findings suggest that adults and children use implicit knowledge about the sequence to plan and execute leg movement during visually guided walking.

摘要

在视觉引导下行走时,自主的肢体动作改变必须与基本行走模式相结合。在本研究中,我们测试了自主的步态改变是否会随着练习而变得更加自动化。我们通过呈现视觉步幅目标来挑战行走控制,该目标指示受试者在不同试验中改变步长。我们的序列学习范式源自上肢研究中使用的序列反应时(SRT)任务。步长的随机和有序序列均用于测量行走过程中的序列特异性学习和序列非特异性学习。此外,我们确定了年龄(即健康的年轻人与儿童)和生物力学因素(即行走速度)如何影响运动序列学习的速率和幅度。结果表明,健康的年轻人(年龄24±5岁,n = 20)能够在300个训练步中学习特定的步长序列。年幼的儿童(年龄6 - 10岁,n = 8)基线表现较低,但与年长儿童(11 - 16岁,n = 10)和健康成年人相比,他们的序列学习幅度和速率相同。此外,在较快的行走速度下,学习能力可能更有限。据我们所知,这是第一项证明空间序列学习可以与诸如行走这样高度自动化的任务相结合的研究。这些发现表明,成年人和儿童在视觉引导下行走时会利用关于序列的隐性知识来计划和执行腿部动作。

相似文献

1
Locomotor sequence learning in visually guided walking.
J Neurophysiol. 2016 Apr;115(4):2014-20. doi: 10.1152/jn.00938.2015. Epub 2016 Feb 10.
2
Performance of a visuomotor walking task in an augmented reality training setting.
Hum Mov Sci. 2017 Dec;56(Pt B):11-19. doi: 10.1016/j.humov.2017.10.005. Epub 2017 Oct 31.
3
Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry.
J Neurophysiol. 2020 Jul 1;124(1):32-39. doi: 10.1152/jn.00083.2020. Epub 2020 May 20.
4
Use of explicit processes during a visually guided locomotor learning task predicts 24-h retention after stroke.
J Neurophysiol. 2021 Jan 1;125(1):211-222. doi: 10.1152/jn.00340.2020. Epub 2020 Nov 11.
5
Effects of aging and dual tasking on step adjustments to perturbations in visually cued walking.
Exp Brain Res. 2015 Dec;233(12):3467-74. doi: 10.1007/s00221-015-4407-5. Epub 2015 Aug 23.
6
A marching-walking hybrid induces step length adaptation and transfers to natural walking.
J Neurophysiol. 2015 Jun 1;113(10):3905-14. doi: 10.1152/jn.00779.2014. Epub 2015 Apr 1.
7
Unilateral step training can drive faster learning of novel gait patterns.
Sci Rep. 2020 Oct 29;10(1):18628. doi: 10.1038/s41598-020-75839-3.
8
Evidence for age-related decline in visuomotor function and reactive stepping adjustments.
Gait Posture. 2012 Jul;36(3):477-81. doi: 10.1016/j.gaitpost.2012.04.009. Epub 2012 May 19.
10
Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force.
J Neurophysiol. 2015 Dec;114(6):3255-67. doi: 10.1152/jn.00302.2015. Epub 2015 Sep 30.

引用本文的文献

1
Wearable MEG data recorded during human stepping.
Data Brief. 2025 Apr 25;60:111574. doi: 10.1016/j.dib.2025.111574. eCollection 2025 Jun.
2
Sleep benefits perceptual but not movement-based learning of locomotor sequences.
Sci Rep. 2024 Jul 9;14(1):15868. doi: 10.1038/s41598-024-66177-9.
3
Reinforcement feedback impairs locomotor adaptation and retention.
Front Behav Neurosci. 2024 Apr 24;18:1388495. doi: 10.3389/fnbeh.2024.1388495. eCollection 2024.
4
"Walking selectivity" in the occipital place area in 8-year-olds, not 5-year-olds.
Cereb Cortex. 2024 Mar 1;34(3). doi: 10.1093/cercor/bhae101.
5
Reduced corticospinal drive and inflexible temporal adaptation during visually guided walking in older adults.
J Neurophysiol. 2023 Dec 1;130(6):1508-1520. doi: 10.1152/jn.00078.2023. Epub 2023 Nov 8.
6
Don't watch your step: gaze behavior adapts with practice of a target stepping task.
J Neurophysiol. 2022 Sep 1;128(3):445-454. doi: 10.1152/jn.00155.2022. Epub 2022 Jul 13.
8
10
Different neural substrates for precision stepping and fast online step adjustments in youth.
Brain Struct Funct. 2018 May;223(4):2039-2053. doi: 10.1007/s00429-017-1586-9. Epub 2018 Jan 24.

本文引用的文献

1
Taking the next step: cortical contributions to the control of locomotion.
Curr Opin Neurobiol. 2015 Aug;33:25-33. doi: 10.1016/j.conb.2015.01.011. Epub 2015 Jan 30.
2
Visual control of foot placement when walking over complex terrain.
J Exp Psychol Hum Percept Perform. 2014 Feb;40(1):106-15. doi: 10.1037/a0033101. Epub 2013 Jun 10.
3
Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults.
Front Hum Neurosci. 2013 Apr 17;7:142. doi: 10.3389/fnhum.2013.00142. eCollection 2013.
4
Cueing and gait improvement among people with Parkinson's disease: a meta-analysis.
Arch Phys Med Rehabil. 2013 Mar;94(3):562-70. doi: 10.1016/j.apmr.2012.10.026. Epub 2012 Nov 2.
5
The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan.
Dev Sci. 2012 Jul;15(4):496-505. doi: 10.1111/j.1467-7687.2012.01150.x. Epub 2012 Apr 5.
6
Development of human locomotion.
Curr Opin Neurobiol. 2012 Oct;22(5):822-8. doi: 10.1016/j.conb.2012.03.012. Epub 2012 Apr 10.
8
Locomotor primitives in newborn babies and their development.
Science. 2011 Nov 18;334(6058):997-9. doi: 10.1126/science.1210617.
9
Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait.
J Physiol. 2010 Nov 15;588(Pt 22):4387-400. doi: 10.1113/jphysiol.2010.195735. Epub 2010 Sep 13.
10
Kinematic strategies in newly walking toddlers stepping over different support surfaces.
J Neurophysiol. 2010 Mar;103(3):1673-84. doi: 10.1152/jn.00945.2009. Epub 2010 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验