Ali Ashfaq, Varga Tibor V, Stojkovic Ivana A, Schulz Christina-Alexandra, Hallmans Göran, Barroso Inês, Poveda Alaitz, Renström Frida, Orho-Melander Marju, Franks Paul W
From the Department of Clinical Sciences, Genetic & Molecular Epidemiology Unit (A.A., T.V.V., A.P., F.R., P.W.F.) and Department of Clinical Sciences, Diabetes & Cardiovascular Disease-Genetic Epidemiology (I.A.S., C.-A.S., M.O.-M.), Lund University, Malmö, Sweden; Department of Systems Medicine, Steno Diabetes Center, Gentofte, Denmark (A.A.); Department of Biobank Research (G.H., F.R.) and Department of Public Health & Clinical Medicine (P.W.F.), Umeå University, Umeå, Sweden; Human Genetics Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton (I.B.); NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science (I.B.) and University of Cambridge, Metabolic Research Laboratories Institute of Metabolic Science (I.B.), Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain (A.P.); and Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (P.W.F.).
Circ Cardiovasc Genet. 2016 Apr;9(2):162-71. doi: 10.1161/CIRCGENETICS.115.001218. Epub 2016 Feb 10.
Obesity is a major risk factor for dyslipidemia, but this relationship is highly variable. Recently published data from 2 Danish cohorts suggest that genetic factors may underlie some of this variability.
We tested whether established triglyceride-associated loci modify the relationship of body mass index (BMI) and triglyceride concentrations in 2 Swedish cohorts (the Gene-Lifestyle Interactions and Complex Traits Involved in Elevated Disease Risk [GLACIER Study; N=4312] and the Malmö Diet and Cancer Study [N=5352]). The genetic loci were amalgamated into a weighted genetic risk score (WGRSTG) by summing the triglyceride-elevating alleles (weighted by their established marginal effects) for all loci. Both BMI and the WGRSTG were strongly associated with triglyceride concentrations in GLACIER, with each additional BMI unit (kg/m(2)) associated with 2.8% (P=8.4×10(-84)) higher triglyceride concentration and each additional WGRSTG unit with 2% (P=7.6×10(-48)) higher triglyceride concentration. Each unit of the WGRSTG was associated with 1.5% higher triglyceride concentrations in normal weight and 2.4% higher concentrations in overweight/obese participants (Pinteraction=0.056). Meta-analyses of results from the Swedish cohorts yielded a statistically significant WGRSTG×BMI interaction effect (Pinteraction=6.0×10(-4)), which was strengthened by including data from the Danish cohorts (Pinteraction=6.5×10(-7)). In the meta-analysis of the Swedish cohorts, nominal evidence of a 3-way interaction (WGRSTG×BMI×sex) was observed (Pinteraction=0.03), where the WGRSTG×BMI interaction was only statistically significant in females. Using protein-protein interaction network analyses, we identified molecular interactions and pathways elucidating the metabolic relationships between BMI and triglyceride-associated loci.
Our findings provide evidence that body fatness accentuates the effects of genetic susceptibility variants in hypertriglyceridemia, effects that are most evident in females.
肥胖是血脂异常的主要危险因素,但这种关系具有高度变异性。最近来自2个丹麦队列发表的数据表明,遗传因素可能是造成这种变异性的部分原因。
我们在2个瑞典队列(基因-生活方式相互作用与疾病风险升高相关复杂性状研究[GLACIER研究;N = 4312]和马尔默饮食与癌症研究[N = 5352])中测试了已确定的甘油三酯相关基因座是否会改变体重指数(BMI)与甘油三酯浓度之间的关系。通过对所有基因座的甘油三酯升高等位基因(根据其已确定的边际效应加权)求和,将这些基因座合并为一个加权遗传风险评分(WGRSTG)。在GLACIER研究中,BMI和WGRSTG均与甘油三酯浓度密切相关,BMI每增加1个单位(kg/m²),甘油三酯浓度升高2.8%(P = 8.4×10⁻⁸⁴),WGRSTG每增加1个单位,甘油三酯浓度升高2%(P = 7.6×10⁻⁴⁸)。在正常体重参与者中,WGRSTG每增加1个单位,甘油三酯浓度升高1.5%,在超重/肥胖参与者中升高2.4%(P交互作用 = 0.056)。对瑞典队列结果的荟萃分析产生了具有统计学意义的WGRSTG×BMI交互作用效应(P交互作用 = 6.0×10⁻⁴),纳入丹麦队列的数据后该效应得到增强(P交互作用 = 6.5×10⁻⁷)。在对瑞典队列的荟萃分析中,观察到了三方交互作用(WGRSTG×BMI×性别)的名义证据(P交互作用 = 0.03),其中WGRSTG×BMI交互作用仅在女性中具有统计学意义。通过蛋白质-蛋白质相互作用网络分析,我们确定了阐明BMI与甘油三酯相关基因座之间代谢关系的分子相互作用和途径。
我们的研究结果提供了证据,表明体脂会加剧高甘油三酯血症中遗传易感性变异的影响,这种影响在女性中最为明显。