Suppr超能文献

通过算子分裂对反应扩散主方程进行自适应模拟的局部误差估计。

Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

作者信息

Hellander Andreas, Lawson Michael J, Drawert Brian, Petzold Linda

机构信息

Department of Information Technology, Uppsala University, Box 337, SE-75105, Uppsala, Sweden.

Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106-5070, USA.

出版信息

J Comput Phys. 2014 Jun 1;266:89-100. doi: 10.1016/j.jcp.2014.02.004.

Abstract

The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

摘要

如果网格精细或扩散常数较大,那么反应扩散主方程(RDME)精确模拟方法的效率会因大量扩散事件而受到严重限制。此外,精确动力学蒙特卡罗模拟方法的固有特性限制了并行实现的效率。已经出现了几种近似方法和混合方法,它们能够更高效地模拟RDME。它们大多数的一个共同特征是,它们依赖于将系统分解为反应部分和扩散部分,并在离散时间步长上依次更新它们。这种算子分裂的使用能够实现更高效的模拟,但代价是存在一个取决于时间步长大小的时间离散化误差。到目前为止,现有方法尚未尝试以系统的方式估计或控制此误差。这使得求解器对于从业者来说难以使用,因为他们必须猜测一个合适的时间步长。这也使得求解器可能比根据误差调整时间步长时的效率更低。在此,我们推导局部误差的估计值,并提出一种在通过一阶算子分裂模拟RDME时自适应选择时间步长的策略。虽然该策略具有通用性,适用于广泛的近似方法和混合方法,但我们在此通过扩展先前发表的近似方法——扩散有限状态投影(DFSP)方法以纳入时间适应性来举例说明。

相似文献

2
A convergent reaction-diffusion master equation.一个收敛的反应-扩散主方程。
J Chem Phys. 2013 Aug 7;139(5):054101. doi: 10.1063/1.4816377.
3
Reaction-diffusion master equation in the microscopic limit.微观极限下的反应扩散主方程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):042901. doi: 10.1103/PhysRevE.85.042901. Epub 2012 Apr 3.
5
Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials.反应扩散主方程、扩散限制反应和奇异势
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066106. doi: 10.1103/PhysRevE.80.066106. Epub 2009 Dec 7.
9
Reaction rates for mesoscopic reaction-diffusion kinetics.介观反应扩散动力学的反应速率
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023312. doi: 10.1103/PhysRevE.91.023312. Epub 2015 Feb 23.

本文引用的文献

2
Fractional diffusion-reaction stochastic simulations.分数阶扩散-反应随机模拟。
J Chem Phys. 2013 Mar 14;138(10):104117. doi: 10.1063/1.4794696.
7
Spatio-temporal correlations can drastically change the response of a MAPK pathway.时空相关性可以极大地改变 MAPK 通路的反应。
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2473-8. doi: 10.1073/pnas.0906885107. Epub 2010 Jan 25.
9
On the spontaneous emergence of cell polarity.论细胞极性的自发形成。
Nature. 2008 Aug 14;454(7206):886-9. doi: 10.1038/nature07119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验