Department of Information Technology, Uppsala University, P.O.Box 337, SE-75105 Uppsala, Sweden.
Department of Computer Science, University of California, Santa Barbara, California 93106-5070, USA.
J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773.
The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.
反应-扩散主方程(RDME)是一种允许在晶格上对空间分辨的随机化学动力学进行有效模拟的模型。与具有布朗动力学或格林函数反应动力学的非晶格硬球模拟相比,如果晶格间距足够粗,RDME 可以快几个数量级。然而,如果反应强烈受到扩散控制,则需要非常精细的网格分辨率才能达到可接受的精度。通常情况下,同一模型中的反应在扩散控制程度上有所不同,因此需要不同程度的网格分辨率。这使得介观模拟对于具有多尺度特性的系统效率低下。介观-微观混合方法通过使用微观、非晶格模拟来解决最具挑战性的反应来解决这个问题。然而,迄今为止所有的方法都需要手动对系统进行分区,这实际上限制了它们作为“黑盒”模拟代码的有用性。在本文中,我们提出了一种基于间接先验误差估计的自动系统分区混合模拟算法。我们在 3D 中扩散控制网络模型上证明了该方法的准确性和效率。