Suppr超能文献

介观-微观空间随机模拟与自动系统分区。

Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.

机构信息

Department of Information Technology, Uppsala University, P.O.Box 337, SE-75105 Uppsala, Sweden.

Department of Computer Science, University of California, Santa Barbara, California 93106-5070, USA.

出版信息

J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773.

Abstract

The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.

摘要

反应-扩散主方程(RDME)是一种允许在晶格上对空间分辨的随机化学动力学进行有效模拟的模型。与具有布朗动力学或格林函数反应动力学的非晶格硬球模拟相比,如果晶格间距足够粗,RDME 可以快几个数量级。然而,如果反应强烈受到扩散控制,则需要非常精细的网格分辨率才能达到可接受的精度。通常情况下,同一模型中的反应在扩散控制程度上有所不同,因此需要不同程度的网格分辨率。这使得介观模拟对于具有多尺度特性的系统效率低下。介观-微观混合方法通过使用微观、非晶格模拟来解决最具挑战性的反应来解决这个问题。然而,迄今为止所有的方法都需要手动对系统进行分区,这实际上限制了它们作为“黑盒”模拟代码的有用性。在本文中,我们提出了一种基于间接先验误差估计的自动系统分区混合模拟算法。我们在 3D 中扩散控制网络模型上证明了该方法的准确性和效率。

相似文献

1
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773.
2
Reaction rates for mesoscopic reaction-diffusion kinetics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023312. doi: 10.1103/PhysRevE.91.023312. Epub 2015 Feb 23.
3
Reaction-diffusion master equation in the microscopic limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):042901. doi: 10.1103/PhysRevE.85.042901. Epub 2012 Apr 3.
5
A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.
Math Biosci. 2019 Jun;312:23-32. doi: 10.1016/j.mbs.2019.04.001. Epub 2019 Apr 15.
6
A convergent reaction-diffusion master equation.
J Chem Phys. 2013 Aug 7;139(5):054101. doi: 10.1063/1.4816377.
7
Hierarchical algorithm for the reaction-diffusion master equation.
J Chem Phys. 2020 Jan 21;152(3):034104. doi: 10.1063/1.5095075.
8
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
BMC Syst Biol. 2017 Mar 14;11(Suppl 3):21. doi: 10.1186/s12918-017-0401-9.
10
Combining molecular dynamics with mesoscopic Green's function reaction dynamics simulations.
J Chem Phys. 2015 Dec 7;143(21):214102. doi: 10.1063/1.4936254.

引用本文的文献

1
A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement.
PLoS Comput Biol. 2021 Jul 15;17(7):e1008525. doi: 10.1371/journal.pcbi.1008525. eCollection 2021 Jul.
2
Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry.
Mol Biol Cell. 2021 Jan 15;32(2):186-210. doi: 10.1091/mbc.E20-08-0530. Epub 2020 Nov 25.
3
Hierarchical algorithm for the reaction-diffusion master equation.
J Chem Phys. 2020 Jan 21;152(3):034104. doi: 10.1063/1.5095075.

本文引用的文献

1
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.
Multiscale Model Simul. 2016;14(2):668-707. doi: 10.1137/15M1013110. Epub 2016 May 3.
2
Reaction rates for reaction-diffusion kinetics on unstructured meshes.
J Chem Phys. 2017 Feb 14;146(6):064101. doi: 10.1063/1.4975167.
4
Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist.
PLoS Comput Biol. 2016 Dec 8;12(12):e1005220. doi: 10.1371/journal.pcbi.1005220. eCollection 2016 Dec.
5
A hybrid continuous-discrete method for stochastic reaction-diffusion processes.
R Soc Open Sci. 2016 Sep 14;3(9):160485. doi: 10.1098/rsos.160485. eCollection 2016 Sep.
6
Reaction rates for a generalized reaction-diffusion master equation.
Phys Rev E. 2016 Jan;93(1):013307. doi: 10.1103/PhysRevE.93.013307. Epub 2016 Jan 19.
7
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations.
J Comput Phys. 2015 May 15;289:1-17. doi: 10.1016/j.jcp.2015.01.030.
8
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
J Comput Phys. 2015 Oct 15;299:429-445. doi: 10.1016/j.jcp.2015.07.002.
10
Multiscale reaction-diffusion simulations with Smoldyn.
Bioinformatics. 2015 Jul 15;31(14):2406-8. doi: 10.1093/bioinformatics/btv149. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验