Suppr超能文献

研究气泡与细胞相互作用的体外方法:基础与治疗应用

In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications.

作者信息

Lajoinie Guillaume, De Cock Ine, Coussios Constantin C, Lentacker Ine, Le Gac Séverine, Stride Eleanor, Versluis Michel

机构信息

Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands.

Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium.

出版信息

Biomicrofluidics. 2016 Jan 28;10(1):011501. doi: 10.1063/1.4940429. eCollection 2016 Jan.

Abstract

Besides their use as contrast agents for ultrasound imaging, microbubbles are increasingly studied for a wide range of therapeutic applications. In particular, their ability to enhance the uptake of drugs through the permeabilization of tissues and cell membranes shows great promise. In order to fully understand the numerous paths by which bubbles can interact with cells and the even larger number of possible biological responses from the cells, thorough and extensive work is necessary. In this review, we consider the range of experimental techniques implemented in in vitro studies with the aim of elucidating these microbubble-cell interactions. First of all, the variety of cell types and cell models available are discussed, emphasizing the need for more and more complex models replicating in vivo conditions together with experimental challenges associated with this increased complexity. Second, the different types of stabilized microbubbles and more recently developed droplets and particles are presented, followed by their acoustic or optical excitation methods. Finally, the techniques exploited to study the microbubble-cell interactions are reviewed. These techniques operate over a wide range of timescales, or even off-line, revealing particular aspects or subsequent effects of these interactions. Therefore, knowledge obtained from several techniques must be combined to elucidate the underlying processes.

摘要

除了用作超声成像的造影剂外,微泡在广泛的治疗应用中也越来越受到研究。特别是,它们通过使组织和细胞膜通透化来增强药物摄取的能力显示出巨大的前景。为了全面了解气泡与细胞相互作用的众多途径以及细胞可能产生的更多生物学反应,需要进行深入而广泛的研究。在这篇综述中,我们考虑了体外研究中为阐明这些微泡 - 细胞相互作用而采用的一系列实验技术。首先,讨论了可用的各种细胞类型和细胞模型,强调了需要越来越多能够复制体内条件的复杂模型以及与此增加的复杂性相关的实验挑战。其次,介绍了不同类型的稳定微泡以及最近开发的液滴和颗粒,随后介绍了它们的声学或光学激发方法。最后,对用于研究微泡 - 细胞相互作用的技术进行了综述。这些技术在广泛的时间尺度上运行,甚至是离线运行,揭示了这些相互作用的特定方面或后续效应。因此,必须结合从多种技术获得的知识来阐明潜在的过程。

相似文献

1
In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications.
Biomicrofluidics. 2016 Jan 28;10(1):011501. doi: 10.1063/1.4940429. eCollection 2016 Jan.
2
The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation.
Langmuir. 2019 Aug 6;35(31):10173-10191. doi: 10.1021/acs.langmuir.8b03779. Epub 2019 Feb 4.
3
WE-C-218-01: Ultrasound Contrast Agents.
Med Phys. 2012 Jun;39(6Part27):3953. doi: 10.1118/1.4736133.
4
Droplets, Bubbles and Ultrasound Interactions.
Adv Exp Med Biol. 2016;880:157-74. doi: 10.1007/978-3-319-22536-4_9.
5
Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
Phys Med Biol. 2015 Oct 21;60(20):7909-25. doi: 10.1088/0031-9155/60/20/7909. Epub 2015 Sep 25.
6
Ultrasound contrast agents: basic principles.
Eur J Radiol. 1998 May;27 Suppl 2:S157-60. doi: 10.1016/s0720-048x(98)00057-6.
7
Stable and transient subharmonic emissions from isolated contrast agent microbubbles.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):480-97. doi: 10.1109/tuffc.2007.272.
8
Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation.
J Control Release. 2016 Feb 10;223:157-164. doi: 10.1016/j.jconrel.2015.12.001. Epub 2015 Dec 10.
9
The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets.
Ultrasonics. 2013 Sep;53(7):1368-76. doi: 10.1016/j.ultras.2013.04.005. Epub 2013 Apr 16.

引用本文的文献

1
Cyclic jetting enables microbubble-mediated drug delivery.
Nat Phys. 2025;21(4):590-598. doi: 10.1038/s41567-025-02785-0. Epub 2025 Feb 21.
2
Analysis of Microbubble-Blood cell system Oscillation/Cavitation influenced by ultrasound Forces: Conjugate applications of FEM and LBM.
Ultrason Sonochem. 2024 Aug;108:106972. doi: 10.1016/j.ultsonch.2024.106972. Epub 2024 Jun 26.
4
Protein-Decorated Microbubbles for Ultrasound-Mediated Cell Surface Manipulation.
ACS Appl Bio Mater. 2023 Dec 18;6(12):5746-5758. doi: 10.1021/acsabm.3c00861. Epub 2023 Dec 4.
5
Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs.
Nat Commun. 2023 Nov 22;14(1):7639. doi: 10.1038/s41467-023-43239-6.
6
Exploring Different Ultrasonic Parameters and Treatment Conditions to Optimize In Vitro Sonodynamic Therapeutic Effects in Cancer Cells.
Cell Biochem Biophys. 2024 Mar;82(1):303-314. doi: 10.1007/s12013-023-01189-2. Epub 2023 Oct 13.
7
An Acoustic Device for Ultra High-Speed Quantification of Cell Strain During Cell-Microbubble Interaction.
ACS Biomater Sci Eng. 2023 Oct 9;9(10):5912-5923. doi: 10.1021/acsbiomaterials.3c00757. Epub 2023 Sep 25.
8
The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery.
Biomicrofluidics. 2023 Apr 10;17(2):021502. doi: 10.1063/5.0130769. eCollection 2023 Mar.

本文引用的文献

1
Laser-driven resonance of dye-doped oil-coated microbubbles: Experimental study.
J Acoust Soc Am. 2017 Jun;141(6):4832. doi: 10.1121/1.4985560.
2
Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
Ultrasound Med Biol. 2016 Mar;42(3):782-94. doi: 10.1016/j.ultrasmedbio.2015.10.023. Epub 2015 Dec 7.
4
7
Ultrasound imaging of breast tumor perfusion and neovascular morphology.
Ultrasound Med Biol. 2015 Sep;41(9):2292-302. doi: 10.1016/j.ultrasmedbio.2015.04.016. Epub 2015 Jun 24.
8
Microfluidic 3D cell culture: from tools to tissue models.
Curr Opin Biotechnol. 2015 Dec;35:118-26. doi: 10.1016/j.copbio.2015.05.002. Epub 2015 Jun 19.
9
Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
Ultrasonics. 2015 Sep;62:66-74. doi: 10.1016/j.ultras.2015.05.002. Epub 2015 May 21.
10
Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble.
Biomaterials. 2015 Jul;56:104-13. doi: 10.1016/j.biomaterials.2015.03.043. Epub 2015 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验