Suppr超能文献

用于活体动物无标记成像的实时柔性多光子微型内窥镜的研制。

Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal.

作者信息

Ducourthial Guillaume, Leclerc Pierre, Mansuryan Tigran, Fabert Marc, Brevier Julien, Habert Rémi, Braud Flavie, Batrin Renaud, Vever-Bizet Christine, Bourg-Heckly Geneviève, Thiberville Luc, Druilhe Anne, Kudlinski Alexandre, Louradour Frédéric

机构信息

XLIM, UMR-CNRS 7252, Université de Limoges, France.

PhLAM, UMR-CNRS 8523, Université Lille I, Villeneuve d'Ascq, France.

出版信息

Sci Rep. 2015 Dec 17;5:18303. doi: 10.1038/srep18303.

Abstract

We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope's transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope's unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.

摘要

我们展示了一种双光子微型内窥镜,它能够通过一根非常长的光纤进行体内无标记的深层组织高分辨率快速成像。首先,一种先进的光脉冲光谱时间整形装置可对在内窥镜光纤内传播过程中出现的线性和非线性失真进行最佳预补偿。这使得在5米光纤的输出端能够传输持续时间低于40飞秒的红外激发脉冲。其次,内窥镜光纤是一种定制的双包层保偏光子晶体光纤,专门设计用于优化成像分辨率和本征发光的反向收集。第三,一个外径为2.2毫米的小型化光纤扫描仪允许以每秒8帧的速度同时进行二次谐波生成(SHG)和双光子激发自发荧光(TPEF)成像。这种微型内窥镜的横向分辨率和轴向分辨率分别为0.8微米和12微米,视野高达450微米。这种微型内窥镜前所未有的能力在无标记成像过程中得到了验证,在体外对各种固定的人体组织样本进行了验证,并在体内对一只麻醉小鼠的肾脏进行了验证,证明成像穿透深度大于器官表面以下300微米。本手稿中报告的结果证实,非线性微型内窥镜可以成为一种有价值的临床工具,用于对病理状态进行实时原位评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28ca/4682136/32e2344d655d/srep18303-f1.jpg

相似文献

3
Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17598-603. doi: 10.1073/pnas.1114746108. Epub 2011 Oct 17.
5
A readily usable two-photon fluorescence lifetime microendoscope.
J Biophotonics. 2019 May;12(5):e201800276. doi: 10.1002/jbio.201800276. Epub 2019 Jan 2.
8
In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope.
J Biomed Opt. 2012 Apr;17(4):040505. doi: 10.1117/1.JBO.17.4.040505.

引用本文的文献

1
Two-photon microscopy using picosecond pulses from four-wave mixing in a Yb-doped photonic crystal fiber.
Biomed Opt Express. 2025 May 14;16(6):2327-2336. doi: 10.1364/BOE.563581. eCollection 2025 Jun 1.
2
The State of High-Resolution Imaging of the Human Inner Ear: A Look Into the Black Box.
Adv Sci (Weinh). 2025 Jul;12(28):e00556. doi: 10.1002/advs.202500556. Epub 2025 Jun 5.
3
Video-rate two-photon microendoscopy using second harmonic resonance fiber scanning.
Biomed Opt Express. 2024 Oct 11;15(11):6324-6339. doi: 10.1364/BOE.534399. eCollection 2024 Nov 1.
4
Perspectives on endoscopic functional photoacoustic microscopy.
Appl Phys Lett. 2024 Jul 15;125(3):030502. doi: 10.1063/5.0201691.
5
Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration.
Biophys Rev. 2023 Oct 5;16(2):219-235. doi: 10.1007/s12551-023-01158-2. eCollection 2024 Apr.
7
Recent advances in light patterned optogenetic photostimulation in freely moving mice.
Neurophotonics. 2024 Sep;11(Suppl 1):S11508. doi: 10.1117/1.NPh.11.S1.S11508. Epub 2024 Feb 23.
8
Advancing the path to imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy.
Neurophotonics. 2024 Sep;11(Suppl 1):S11506. doi: 10.1117/1.NPh.11.S1.S11506. Epub 2024 Feb 13.
10
Design and test of a rigid endomicroscopic system for multimodal imaging and femtosecond laser ablation.
J Biomed Opt. 2023 Jun;28(6):066004. doi: 10.1117/1.JBO.28.6.066004. Epub 2023 Jun 28.

本文引用的文献

1
Miniature objective lens with variable focus for confocal endomicroscopy.
Biomed Opt Express. 2014 Nov 24;5(12):4350-61. doi: 10.1364/BOE.5.004350. eCollection 2014 Dec 1.
2
Assessment of breast pathologies using nonlinear microscopy.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15304-9. doi: 10.1073/pnas.1416955111. Epub 2014 Oct 13.
3
Advances in multiphoton microscopy technology.
Nat Photonics. 2013 Feb 1;7(2):93-101. doi: 10.1038/nphoton.2012.361.
5
Miniature varifocal objective lens for endomicroscopy.
Opt Lett. 2013 Aug 15;38(16):3103-6. doi: 10.1364/OL.38.003103.
6
Dual modality endomicroscope with optical zoom capability.
Biomed Opt Express. 2013 Aug 1;4(9):1494-503. doi: 10.1364/BOE.4.001494. eCollection 2013.
7
Microelectromechanically-driven miniature adaptive Alvarez lens.
Opt Express. 2013 Jan 14;21(1):1226-33. doi: 10.1364/OE.21.001226.
8
Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm.
Opt Express. 2012 Nov 5;20(23):25624-35. doi: 10.1364/OE.20.025624.
9
A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy.
Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):12878-83. doi: 10.1073/pnas.1121495109. Epub 2012 Jul 23.
10
Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration.
Biomed Opt Express. 2012 May 1;3(5):840-53. doi: 10.1364/BOE.3.000840. Epub 2012 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验