Suppr超能文献

从时空图像数据推断非小细胞肺癌细胞生长多细胞球体中的生长控制机制

Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.

作者信息

Jagiella Nick, Müller Benedikt, Müller Margareta, Vignon-Clementel Irene E, Drasdo Dirk

机构信息

Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.

INRIA Paris, Centre de recherche Inria de Paris, Paris, France.

出版信息

PLoS Comput Biol. 2016 Feb 11;12(2):e1004412. doi: 10.1371/journal.pcbi.1004412. eCollection 2016 Feb.

Abstract

We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue organization processes. Importantly, calibrating the model with two nutriment-rich growth conditions, the outcome for two nutriment-poor growth conditions could be predicted. As the final model is however quite complex, incorporating many mechanisms, space, time, and stochastic processes, parameter identification is a challenge. This calls for more efficient strategies of imaging and image analysis, as well as of parameter identification in stochastic agent-based simulations.

摘要

我们针对非小细胞肺癌(NSCLC)细胞系SK-MES-1细胞在多种营养条件下生长形成的多细胞肿瘤球体(MCTS),开发了一种基于单细胞的定量数学模型:我们将该模型的模拟结果与细胞增殖、细胞外基质(ECM)、细胞分布和细胞死亡的生长动力学及空间标记模式数据进行对比。我们从一个能捕捉部分实验观察结果的简单模型开始。然后,通过在模型的每个开发阶段进行敏感性分析,我们表明需要逐步增加模型的复杂性,以考虑更多的实验生长条件。最终,我们得到了一个在很大程度上模拟多种条件下MCTS生长的模型。有趣的是,最终模型是一个最小模型,能够在某种意义上同时解释所有数据,即它所包含的机制数量足以解释数据,并且在生理参数范围内遗漏任何一个机制都无法使所有数据与模型拟合。然而,与早期模型相比,它相当复杂,即它包含了生物学文献中讨论的广泛机制。在这个模型中,缺氧的细胞从有氧糖酵解转变为无氧糖酵解并产生乳酸。过高的乳酸浓度或过低的ATP浓度会促进细胞死亡。只有当细胞外基质密度超过一定阈值时,细胞才能进入细胞周期。死亡细胞会产生一种扩散性生长抑制剂。遗漏空间信息将无法推断起作用的机制。我们的研究结果表明,这种迭代数据整合以及在每个模型开发阶段进行中间模型敏感性分析,为推断肿瘤生长的预测性且最小(上述意义上)定量模型提供了一种有前景的策略,对于其他组织构建过程也是如此。重要的是,用两种营养丰富的生长条件校准模型后,可以预测两种营养匮乏生长条件下的结果。然而,由于最终模型相当复杂,包含许多机制、空间、时间和随机过程,参数识别是一个挑战。这就需要更有效的成像和图像分析策略,以及基于随机代理模拟的参数识别策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7f/4750943/a02ca99bdd90/pcbi.1004412.g001.jpg

相似文献

1
Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.
PLoS Comput Biol. 2016 Feb 11;12(2):e1004412. doi: 10.1371/journal.pcbi.1004412. eCollection 2016 Feb.
2
Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model.
PLoS Comput Biol. 2019 Jun 11;15(6):e1007053. doi: 10.1371/journal.pcbi.1007053. eCollection 2019 Jun.
3
AnaSP: a software suite for automatic image analysis of multicellular spheroids.
Comput Methods Programs Biomed. 2015 Apr;119(1):43-52. doi: 10.1016/j.cmpb.2015.02.006. Epub 2015 Feb 24.
4
A single-cell-based model of tumor growth in vitro: monolayers and spheroids.
Phys Biol. 2005 Jul 12;2(3):133-47. doi: 10.1088/1478-3975/2/3/001.
5
Proliferation and death in a binary environment: a stochastic model of cellular ecosystems.
Bull Math Biol. 2006 Oct;68(7):1661-80. doi: 10.1007/s11538-006-9078-8. Epub 2006 May 20.
6
Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids.
PLoS One. 2016 Jun 15;11(6):e0156942. doi: 10.1371/journal.pone.0156942. eCollection 2016.
7
Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model.
Biomech Model Mechanobiol. 2016 Oct;15(5):1215-28. doi: 10.1007/s10237-015-0755-0. Epub 2016 Jan 8.
8
A multiscale model for avascular tumor growth.
Biophys J. 2005 Dec;89(6):3884-94. doi: 10.1529/biophysj.105.060640. Epub 2005 Sep 30.
9
Continuum versus discrete model: a comparison for multicellular tumour spheroids.
Philos Trans A Math Phys Eng Sci. 2006 Jun 15;364(1843):1443-64. doi: 10.1098/rsta.2006.1780.
10
Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines.
PLoS Comput Biol. 2019 Mar 8;15(3):e1006273. doi: 10.1371/journal.pcbi.1006273. eCollection 2019 Mar.

引用本文的文献

1
Multicellular model of neuroblastoma proposes unconventional therapy based on multiple roles of p53.
PLoS Comput Biol. 2024 Dec 23;20(12):e1012648. doi: 10.1371/journal.pcbi.1012648. eCollection 2024 Dec.
2
From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling.
iScience. 2024 Nov 5;27(12):111322. doi: 10.1016/j.isci.2024.111322. eCollection 2024 Dec 20.
3
A seven-step guide to spatial, agent-based modelling of tumour evolution.
Evol Appl. 2024 May 2;17(5):e13687. doi: 10.1111/eva.13687. eCollection 2024 May.
6
Digitize your Biology! Modeling multicellular systems through interpretable cell behavior.
bioRxiv. 2023 Nov 5:2023.09.17.557982. doi: 10.1101/2023.09.17.557982.
8
Data-driven spatio-temporal modelling of glioblastoma.
R Soc Open Sci. 2023 Mar 22;10(3):221444. doi: 10.1098/rsos.221444. eCollection 2023 Mar.
9
Hybrid computational models of multicellular tumour growth considering glucose metabolism.
Comput Struct Biotechnol J. 2023 Feb 1;21:1262-1271. doi: 10.1016/j.csbj.2023.01.044. eCollection 2023.
10
Cellular Invasion Assay for the Real-Time Tracking of Individual Cells in Spheroid or Tumor-like Mimics.
Anal Chem. 2023 Feb 7;95(5):3054-3061. doi: 10.1021/acs.analchem.2c05201. Epub 2023 Jan 26.

本文引用的文献

1
Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now? A short survey.
Molecules. 2014 Sep 11;19(9):14366-82. doi: 10.3390/molecules190914366.
2
How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis.
J Hepatol. 2014 Oct;61(4):951-6. doi: 10.1016/j.jhep.2014.06.013. Epub 2014 Jun 17.
3
Selecting radiotherapy dose distributions by means of constrained optimization problems.
Bull Math Biol. 2014 May;76(5):1017-44. doi: 10.1007/s11538-014-9945-7. Epub 2014 Mar 6.
4
Rapid uptake of glucose and lactate, and not hypoxia, induces apoptosis in three-dimensional tumor tissue culture.
Integr Biol (Camb). 2014 Apr;6(4):399-410. doi: 10.1039/c4ib00001c. Epub 2014 Feb 6.
5
A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane.
Int J Numer Method Biomed Eng. 2014 Jul;30(7):726-54. doi: 10.1002/cnm.2624. Epub 2014 Jan 17.
6
Development of a high-throughput three-dimensional invasion assay for anti-cancer drug discovery.
PLoS One. 2013 Dec 11;8(12):e82811. doi: 10.1371/journal.pone.0082811. eCollection 2013.
7
Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution.
Front Oncol. 2013 Apr 16;3:87. doi: 10.3389/fonc.2013.00087. eCollection 2013.
8
An integrated computational/experimental model of lymphoma growth.
PLoS Comput Biol. 2013;9(3):e1003008. doi: 10.1371/journal.pcbi.1003008. Epub 2013 Mar 28.
9
MiR-449c targets c-Myc and inhibits NSCLC cell progression.
FEBS Lett. 2013 May 2;587(9):1359-65. doi: 10.1016/j.febslet.2013.03.006. Epub 2013 Mar 15.
10
Three-dimensional cell culture: the missing link in drug discovery.
Drug Discov Today. 2013 Mar;18(5-6):240-9. doi: 10.1016/j.drudis.2012.10.003. Epub 2012 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验