National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST , Daejeon 34141, Republic of Korea.
Department of Materials Science and Engineering, KAIST , Daejeon 34141, Republic of Korea.
ACS Nano. 2016 Mar 22;10(3):3435-42. doi: 10.1021/acsnano.5b07511. Epub 2016 Feb 16.
Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.
最近的高功率激光加工进展使得快速、连续、区域选择性的材料制造成为可能,这通常以激光结晶硅或氧化物的形式用于显示应用。二维材料如石墨烯表现出显著的物理性质,正在被积极开发用于制造柔性器件。在这里,我们展示了一种使用低强度红外或可见光激光照射的区域选择性超快纳米制造方法,该方法可以引导嵌段共聚物薄膜在低于 12nm 的尺度下自组装成高度有序的制造相关结构。这种光诱导纳米制造机制的基本原则包括嵌段共聚物在大温度梯度下通过无序-有序转变进行自组装,以及使用化学改性的石墨烯薄膜作为柔性和保形的光吸收层,用于透明、非平面和机械柔性的表面。