Parsonage Derek, Sheng Fang, Hirata Ken, Debnath Anjan, McKerrow James H, Reed Sharon L, Abagyan Ruben, Poole Leslie B, Podust Larissa M
Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.
Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
J Struct Biol. 2016 May;194(2):180-90. doi: 10.1016/j.jsb.2016.02.015. Epub 2016 Feb 12.
The anti-arthritic gold-containing drug Auranofin is lethal to the protozoan intestinal parasite Entamoeba histolytica, the causative agent of human amebiasis, in both culture and animal models of the disease. A putative mechanism of Auranofin action proposes that monovalent gold, Au(I), released from the drug, can bind to the redox-active dithiol group of thioredoxin reductase (TrxR). Au(I) binding in the active site is expected to prevent electron transfer to the downstream substrate thioredoxin (Trx), thus interfering with redox homeostasis in the parasite. To clarify the molecular mechanism of Auranofin action in more detail, we determined a series of atomic resolution X-ray structures for E. histolytica thioredoxin (EhTrx) and thioredoxin reductase (EhTrxR), the latter with and without Auranofin. Only the disulfide-bonded form of the active site dithiol (Cys(140)-Cys(143)) was invariably observed in crystals of EhTrxR in spite of the addition of reductants in various crystallization trials, and no gold was found associated with these cysteines. Non-catalytic Cys(286) was identified as the only site of modification, but further mutagenesis studies using the C286Q mutant demonstrated that this site was not responsible for inhibition of EhTrxR by Auranofin. Interestingly, we obtained both of the catalytically-relevant conformations of this bacterial-like, low molecular weight TrxR in crystals without requiring an engineered disulfide linkage between Cys mutants of TrxR and Trx (as was originally done with Escherichia coli TrxR and Trx). We note that the -CXXC- catalytic motif, even if reduced, would likely not provide space sufficient to bind Au(I) by both cysteines of the dithiol group.
抗关节炎含金药物金诺芬在疾病的培养模型和动物模型中,对原生动物肠道寄生虫溶组织内阿米巴(人类阿米巴病的病原体)具有致死性。金诺芬作用的一种假定机制认为,从该药物释放的一价金(Au(I))可与硫氧还蛋白还原酶(TrxR)的氧化还原活性二硫醇基团结合。预期Au(I)在活性位点的结合会阻止电子向下游底物硫氧还蛋白(Trx)转移,从而干扰寄生虫的氧化还原稳态。为更详细地阐明金诺芬作用的分子机制,我们确定了溶组织内阿米巴硫氧还蛋白(EhTrx)和硫氧还蛋白还原酶(EhTrxR)的一系列原子分辨率X射线结构,后者分别结合和未结合金诺芬。尽管在各种结晶试验中添加了还原剂,但在EhTrxR晶体中始终仅观察到活性位点二硫醇(Cys(140)-Cys(143))的二硫键形式,且未发现这些半胱氨酸与金相关。非催化性的Cys(286)被确定为唯一的修饰位点,但使用C286Q突变体的进一步诱变研究表明,该位点并非金诺芬抑制EhTrxR的原因。有趣的是,我们在晶体中获得了这种类细菌的低分子量TrxR的两种与催化相关的构象,而无需在TrxR和Trx的Cys突变体之间构建工程化二硫键(最初对大肠杆菌TrxR和Trx就是这样做的)。我们注意到,即使还原,-CXXC-催化基序可能也无法提供足够空间使二硫醇基团的两个半胱氨酸都结合Au(I)。