Suppr超能文献

水溶液中碳酸向强碱直接质子转移的反应机理II:溶剂坐标依赖的反应路径

Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

作者信息

Daschakraborty Snehasis, Kiefer Philip M, Miller Yifat, Motro Yair, Pines Dina, Pines Ehud, Hynes James T

机构信息

Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States.

Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel.

出版信息

J Phys Chem B. 2016 Mar 10;120(9):2281-90. doi: 10.1021/acs.jpcb.5b12744. Epub 2016 Mar 2.

Abstract

The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+).

摘要

在前一篇论文(Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742)中,通过Car-Parrinello动力学研究了水溶液中氢键复合物内碳酸(H₂CO₃)对甲胺碱(CH₃NH₂)的质子化作用。本文给出了反应路径的一些重要的进一步细节,特别强调了水溶剂的作用。整个反应是无势垒的,且非常迅速,时间尺度约为100飞秒,质子转移(PT)事件本身非常突然(<10飞秒)。这种转移之前是酸碱氢键的压缩,而水溶剂在实际PT发生之前变化很小;这是由反应的极强驱动力导致的,如非常有利的酸 - 质子化碱ΔpKa差值所示。质子转移突然产生初始接触离子对后,溶剂会立即进一步重排,通过建立平衡溶剂化来使其稳定。溶剂水对初始离子对形成的约120飞秒的短时间尺度响应主要与水分子围绕羧酸根阴离子和质子化碱的振动模式以及氢键压缩有关。这与这种稳定化过程一致,即涉及到水合层水分子与带负电荷的羧酸根基团氧原子(特别是之前的H₂CO₃供体氧原子)以及带正电荷的质子化碱的NH₃⁺的氮原子之间氢键的显著增加。

相似文献

3
Electron Flow Characterization of Charge Transfer for Carbonic Acid to Strong Base Proton Transfer in Aqueous Solution.
J Phys Chem B. 2021 Oct 21;125(41):11473-11490. doi: 10.1021/acs.jpcb.1c05824. Epub 2021 Oct 8.
5
How Acidic Is Carbonic Acid?
J Phys Chem B. 2016 Mar 10;120(9):2440-51. doi: 10.1021/acs.jpcb.5b12428. Epub 2016 Feb 29.
6
Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
J Phys Chem A. 2008 Oct 16;112(41):10386-98. doi: 10.1021/jp804715j. Epub 2008 Sep 25.
9
Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization.
J Am Chem Soc. 2013 Jan 9;135(1):142-54. doi: 10.1021/ja3064809. Epub 2012 Dec 21.
10
Proton transfer dependence on hydrogen-bonding of solvent to the water wire: a theoretical study.
J Phys Chem B. 2013 Jan 10;117(1):307-15. doi: 10.1021/jp310724g. Epub 2012 Dec 26.

引用本文的文献

2
Ultrafast Charge Relocation Dynamics in Enol-Keto Tautomerization Monitored with a Local Soft-X-ray Probe.
J Phys Chem Lett. 2022 Sep 8;13(35):8254-8263. doi: 10.1021/acs.jpclett.2c02037. Epub 2022 Aug 26.
3
Intact carbonic acid is a viable protonating agent for biological bases.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20837-20843. doi: 10.1073/pnas.1909498116. Epub 2019 Sep 30.

本文引用的文献

2
How Acidic Is Carbonic Acid?
J Phys Chem B. 2016 Mar 10;120(9):2440-51. doi: 10.1021/acs.jpcb.5b12428. Epub 2016 Feb 29.
3
Solvation Dynamics in Liquid Water. 1. Ultrafast Energy Fluxes.
J Phys Chem B. 2015 Jun 18;119(24):7558-70. doi: 10.1021/jp5113922. Epub 2015 Jan 30.
4
Pairing mechanism among ionic liquid ions in aqueous solutions: a molecular dynamics study.
J Phys Chem B. 2013 Jul 18;117(28):8555-60. doi: 10.1021/jp404839w. Epub 2013 Jul 8.
5
Ultrafast librational relaxation of H2O in liquid water.
J Phys Chem B. 2013 Apr 25;117(16):4541-52. doi: 10.1021/jp308648u. Epub 2012 Nov 26.
7
Tracking energy transfer from excited to accepting modes: application to water bend vibrational relaxation.
Phys Chem Chem Phys. 2012 May 14;14(18):6332-42. doi: 10.1039/c2cp23555b. Epub 2012 Mar 8.
9
Unified approach for molecular dynamics and density-functional theory.
Phys Rev Lett. 1985 Nov 25;55(22):2471-2474. doi: 10.1103/PhysRevLett.55.2471.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验