Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan.
Nat Mater. 2016 May;15(5):535-41. doi: 10.1038/nmat4566. Epub 2016 Feb 15.
Spin-orbit torque (SOT)-induced magnetization switching shows promise for realizing ultrafast and reliable spintronics devices. Bipolar switching of the perpendicular magnetization by the SOT is achieved under an in-plane magnetic field collinear with an applied current. Typical structures studied so far comprise a nonmagnet/ferromagnet (NM/FM) bilayer, where the spin Hall effect in the NM is responsible for the switching. Here we show that an antiferromagnet/ferromagnet (AFM/FM) bilayer system also exhibits a SOT large enough to switch the magnetization of the FM. In this material system, thanks to the exchange bias of the AFM, we observe the switching in the absence of an applied field by using an antiferromagnetic PtMn and ferromagnetic Co/Ni multilayer with a perpendicular easy axis. Furthermore, tailoring the stack achieves a memristor-like behaviour where a portion of the reversed magnetization can be controlled in an analogue manner. The AFM/FM system is thus a promising building block for SOT devices as well as providing an attractive pathway towards neuromorphic computing.
自旋轨道扭矩(SOT)诱导的磁化翻转有望实现超快速和可靠的自旋电子器件。在与电流平行的面内磁场下,可以实现垂直磁化的双极切换。迄今为止,典型的研究结构包括非磁体/铁磁体(NM/FM)双层结构,其中 NM 中的自旋霍尔效应负责切换。在这里,我们表明反铁磁体/铁磁体(AFM/FM)双层系统也表现出足够大的 SOT,以切换 FM 的磁化。在这种材料系统中,由于 AFM 的交换偏置,我们在没有施加磁场的情况下观察到了开关,使用具有垂直易轴的反铁磁体 PtMn 和铁磁体 Co/Ni 多层结构。此外,通过调整堆叠,实现了类似于忆阻器的行为,其中一部分反转的磁化可以以模拟的方式进行控制。因此,AFM/FM 系统是 SOT 器件的有前途的构建块,同时为神经形态计算提供了有吸引力的途径。