Yoon Ju-Young, Takeuchi Yutaro, Takechi Ryota, Han Jiahao, Uchimura Tomohiro, Yamane Yuta, Kanai Shun, Ieda Jun'ichi, Ohno Hideo, Fukami Shunsuke
Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.
Graduate School of Engineering, Tohoku University, Sendai, Japan.
Nat Commun. 2025 Feb 5;16(1):1171. doi: 10.1038/s41467-025-56157-6.
Spin-orbit torque (SOT) provides a promising mechanism for electrically encoding information in magnetic states. Unlike existing schemes, where the SOT is passively determined by the material and device structures, an active manipulation of the intrinsic SOT polarity would allow for flexibly programmable SOT devices. Achieving this requires electrical control of the current-induced spin polarization of the spin source. Here we demonstrate a proof-of-concept current-programmed SOT device. Using a noncollinear-antiferromagnetic/nonmagnetic/ferromagnetic MnSn/Mo/CoFeB heterostructure at zero magnetic field, we show current-induced switching in the CoFeB layer due to the spin current polarized by the magnetic structure of the MnSn; by properly tuning the driving current, the spin current from the CoFeB further reverses the magnetic orientation of the MnSn, which determines the polarity of the subsequent switching of the CoFeB. This scheme of mutual switching can be achieved in a spin-valve-like simple protocol because each magnetic layer serves as a reversible spin source and target magnetic electrode. It yields intriguing proof-of-concept functionalities for unconventional logic and neuromorphic computing.
自旋轨道矩(SOT)为以磁态电编码信息提供了一种很有前景的机制。与现有方案不同,在现有方案中SOT由材料和器件结构被动决定,而对本征SOT极性进行主动操控将使自旋轨道矩器件能够灵活编程。要实现这一点,需要对自旋源的电流诱导自旋极化进行电控制。在此,我们展示了一种电流编程自旋轨道矩器件的概念验证。在零磁场下使用非共线反铁磁/非磁性/铁磁MnSn/Mo/CoFeB异质结构,我们展示了由于MnSn的磁结构极化的自旋电流而导致CoFeB层中的电流诱导开关;通过适当调节驱动电流,来自CoFeB的自旋电流进一步反转MnSn的磁取向,这决定了CoFeB后续开关的极性。这种相互开关方案可以通过类似自旋阀的简单协议实现,因为每个磁层都充当可逆自旋源和目标磁电极。它为非常规逻辑和神经形态计算产生了有趣的概念验证功能。