Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
Phys Rev Lett. 2014 Nov 7;113(19):196602. doi: 10.1103/PhysRevLett.113.196602. Epub 2014 Nov 4.
We investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn>IrMn>PdMn>FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spin Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.
我们研究了四种 CuAu-I 型金属反铁磁体,以评估它们在利用自旋泵浦和反自旋霍尔效应作为自旋流探测器方面的潜力。对于 FeMn、PdMn 和 IrMn,我们观察到了非平凡的自旋霍尔效应,而对于 PtMn,则获得了更高的效应。通过厚度相关的测量,我们确定这些材料的自旋扩散长度很短,约为 1nm。这四种材料的估计自旋霍尔角遵循 PtMn>IrMn>PdMn>FeMn 的关系,突出了非磁性物种的自旋轨道耦合与它们反铁磁合金中自旋霍尔效应的大小之间的相关性。这些实验与第一性原理计算进行了比较。通过对反铁磁体及其界面的性质进行工程设计,可以为基于反铁磁体的自旋电子学中自旋相关输运性质的操控铺平道路。