Suppr超能文献

可逆和不可逆的半胱氨酸亚磺酸靶向线性碳亲核试剂的合理设计。

Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.

作者信息

Gupta Vinayak, Carroll Kate S

机构信息

Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA.

出版信息

Chem Commun (Camb). 2016 Feb 25;52(16):3414-7. doi: 10.1039/c6cc00228e.

Abstract

Concerns about off-target effects has motivated the development of reversible covalent inhibition strategies for targeting cysteine. However, such strategies have not been reported for the unique cysteine oxoform, sulfenic acid. Herein, we have designed and identified linear C-nucleophiles that react selectively with cysteine sulfenic acid. The resulting thioether adducts exhibit reversibility ranging from minutes to days under reducing conditions, showing the feasibility of tuning C-nucleophile reactivity across a wide range of time scales.

摘要

对脱靶效应的担忧推动了针对半胱氨酸的可逆共价抑制策略的发展。然而,尚未有针对独特的半胱氨酸氧化形式——亚磺酸的此类策略的报道。在此,我们设计并鉴定了与半胱氨酸亚磺酸选择性反应的线性C-亲核试剂。所得硫醚加合物在还原条件下表现出从几分钟到几天不等的可逆性,表明在广泛的时间尺度上调节C-亲核试剂反应性的可行性。

相似文献

1
Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.
Chem Commun (Camb). 2016 Feb 25;52(16):3414-7. doi: 10.1039/c6cc00228e.
2
Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
J Am Chem Soc. 2017 Apr 19;139(15):5588-5595. doi: 10.1021/jacs.7b01791. Epub 2017 Apr 10.
3
Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.
Bioconjug Chem. 2016 May 18;27(5):1411-8. doi: 10.1021/acs.bioconjchem.6b00181. Epub 2016 May 9.
4
Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
J Am Chem Soc. 2007 Nov 14;129(45):14082-91. doi: 10.1021/ja0737218. Epub 2007 Oct 16.
5
Mechanism of the cysteine sulfenic acid O-sulfenylation of 1,3-cyclohexanedione.
Chem Commun (Camb). 2014 Apr 21;50(31):4102-4. doi: 10.1039/c4cc00925h.
6
Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide.
Org Lett. 2015 Dec 18;17(24):6014-7. doi: 10.1021/acs.orglett.5b02981. Epub 2015 Dec 7.
7
Synthesis of chemical probes to map sulfenic acid modifications on proteins.
Bioconjug Chem. 2005 Nov-Dec;16(6):1624-8. doi: 10.1021/bc050257s.
9
Profiling the Reactivity of Cyclic C-Nucleophiles towards Electrophilic Sulfur in Cysteine Sulfenic Acid.
Chem Sci. 2016 Jan 1;7(1):400-415. doi: 10.1039/C5SC02569A. Epub 2015 Oct 7.
10
Strained cycloalkynes as new protein sulfenic acid traps.
J Am Chem Soc. 2014 Apr 30;136(17):6167-70. doi: 10.1021/ja500364r. Epub 2014 Apr 16.

引用本文的文献

1
Nucleophilic covalent ligand discovery for the cysteine redoxome.
Nat Chem Biol. 2023 Nov;19(11):1309-1319. doi: 10.1038/s41589-023-01330-5. Epub 2023 May 29.
4
Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
Acc Chem Res. 2020 Jan 21;53(1):20-31. doi: 10.1021/acs.accounts.9b00562. Epub 2019 Dec 23.
5
Reactive-cysteine profiling for drug discovery.
Curr Opin Chem Biol. 2019 Jun;50:29-36. doi: 10.1016/j.cbpa.2019.02.010. Epub 2019 Mar 18.
6
Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function.
Chem Res Toxicol. 2019 Mar 18;32(3):526-534. doi: 10.1021/acs.chemrestox.8b00385. Epub 2019 Mar 4.
8
Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.
Antioxid Redox Signal. 2018 Aug 20;29(6):518-540. doi: 10.1089/ars.2017.7491. Epub 2018 Feb 16.
9
Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
J Am Chem Soc. 2017 Apr 19;139(15):5588-5595. doi: 10.1021/jacs.7b01791. Epub 2017 Apr 10.
10
Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.
ACS Chem Biol. 2017 Mar 17;12(3):586-600. doi: 10.1021/acschembio.6b01148. Epub 2017 Jan 30.

本文引用的文献

1
Profiling the Reactivity of Cyclic C-Nucleophiles towards Electrophilic Sulfur in Cysteine Sulfenic Acid.
Chem Sci. 2016 Jan 1;7(1):400-415. doi: 10.1039/C5SC02569A. Epub 2015 Oct 7.
3
Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10852-7. doi: 10.1002/anie.201505641. Epub 2015 Jul 24.
4
Global, in situ, site-specific analysis of protein S-sulfenylation.
Nat Protoc. 2015 Jul;10(7):1022-37. doi: 10.1038/nprot.2015.062. Epub 2015 Jun 18.
5
Prolonged and tunable residence time using reversible covalent kinase inhibitors.
Nat Chem Biol. 2015 Jul;11(7):525-31. doi: 10.1038/nchembio.1817. Epub 2015 May 25.
6
Site-specific mapping and quantification of protein S-sulphenylation in cells.
Nat Commun. 2014 Sep 1;5:4776. doi: 10.1038/ncomms5776.
7
Proteomic analysis of peptides tagged with dimedone and related probes.
J Mass Spectrom. 2014 Apr;49(4):257-65. doi: 10.1002/jms.3336.
8
Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases.
J Med Chem. 2014 Jun 26;57(12):5023-38. doi: 10.1021/jm401490p. Epub 2014 Jan 23.
9
Sulfenic acid chemistry, detection and cellular lifetime.
Biochim Biophys Acta. 2014 Feb;1840(2):847-75. doi: 10.1016/j.bbagen.2013.05.040. Epub 2013 Jun 6.
10
Redox regulation of protein kinases.
Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):332-56. doi: 10.3109/10409238.2013.790873. Epub 2013 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验