Long Marcus J C, Poganik Jesse R, Ghosh Souradyuti, Aye Yimon
Department of Chemistry & Chemical Biology, Cornell University , Ithaca, New York 14850, United States.
Department of Biochemistry, Weill Cornell Medicine , New York, New York 10065, United States.
ACS Chem Biol. 2017 Mar 17;12(3):586-600. doi: 10.1021/acschembio.6b01148. Epub 2017 Jan 30.
Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.
离散微区内的氧化还原传感器蛋白网络调节着氧化还原信号的传递。然而,氧化还原信号的固有反应活性使得用传统方法研究特定的氧化还原事件和途径变得复杂。在此,我们综述了能够在细胞和生物体水平上测量通量和/或模拟亚细胞氧化还原信号的设计化学方法。这些努力已开始在体外和体内解读细胞器、位点和靶点特异性氧化还原信号背后的逻辑。这些数据凸显了化学生物学作为探究自然如何编排亚细胞氧化还原化学以驱动精准氧化还原生物学的理想途径。