Suppr超能文献

相似文献

1
Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
J Am Chem Soc. 2017 Apr 19;139(15):5588-5595. doi: 10.1021/jacs.7b01791. Epub 2017 Apr 10.
2
Nucleophilic covalent ligand discovery for the cysteine redoxome.
Nat Chem Biol. 2023 Nov;19(11):1309-1319. doi: 10.1038/s41589-023-01330-5. Epub 2023 May 29.
3
Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.
Chem Commun (Camb). 2016 Feb 25;52(16):3414-7. doi: 10.1039/c6cc00228e.
4
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
5
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
6
Proteome-Wide Survey of Cysteine Oxidation by Using a Norbornene Probe.
Chembiochem. 2020 May 4;21(9):1329-1334. doi: 10.1002/cbic.201900729. Epub 2020 Jan 24.
7
Proteome-wide Ligand and Target Discovery by Using Strain-Enabled Cyclopropane Electrophiles.
J Am Chem Soc. 2024 Jul 31;146(30):20823-20836. doi: 10.1021/jacs.4c04695. Epub 2024 Jul 17.
8
Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
Cell Chem Biol. 2023 Jul 20;30(7):828-838.e4. doi: 10.1016/j.chembiol.2023.06.021. Epub 2023 Jul 13.
9
The Search for Covalently Ligandable Proteins in Biological Systems.
Molecules. 2016 Sep 2;21(9):1170. doi: 10.3390/molecules21091170.
10
Reactive-cysteine profiling for drug discovery.
Curr Opin Chem Biol. 2019 Jun;50:29-36. doi: 10.1016/j.cbpa.2019.02.010. Epub 2019 Mar 18.

引用本文的文献

2
Inhibition of Sirtuin Deacylase Activity by Peroxynitrite.
Biochemistry. 2024 Oct 1;63(19):2463-2476. doi: 10.1021/acs.biochem.4c00257. Epub 2024 Sep 10.
3
Superoxide-responsive quinone methide precursors (QMP-SOs) to study superoxide biology by proximity labeling and chemoproteomics.
RSC Chem Biol. 2024 Aug 7;5(9):924-937. doi: 10.1039/d4cb00111g. eCollection 2024 Aug 28.
4
Targeting Cysteine Oxidation in Thrombotic Disorders.
Antioxidants (Basel). 2024 Jan 9;13(1):83. doi: 10.3390/antiox13010083.
5
Sulfur signaling pathway in cardiovascular disease.
Front Pharmacol. 2023 Nov 24;14:1303465. doi: 10.3389/fphar.2023.1303465. eCollection 2023.
7
Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
Proteomics. 2023 Jul;23(13-14):e2200194. doi: 10.1002/pmic.202200194. Epub 2023 May 29.
8
Flipping the polarity switch.
Nat Chem Biol. 2023 Nov;19(11):1292-1293. doi: 10.1038/s41589-023-01347-w.
9
Nucleophilic covalent ligand discovery for the cysteine redoxome.
Nat Chem Biol. 2023 Nov;19(11):1309-1319. doi: 10.1038/s41589-023-01330-5. Epub 2023 May 29.
10
Chaperone-directed ribosome repair after oxidative damage.
Mol Cell. 2023 May 4;83(9):1527-1537.e5. doi: 10.1016/j.molcel.2023.03.030. Epub 2023 Apr 21.

本文引用的文献

1
The NADPH Oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation of Epidermal Growth Factor Receptor Signaling.
J Biol Chem. 2016 Oct 28;291(44):23282-23293. doi: 10.1074/jbc.M116.749028. Epub 2016 Sep 20.
2
An in vivo multiplexed small-molecule screening platform.
Nat Methods. 2016 Oct;13(10):883-889. doi: 10.1038/nmeth.3992. Epub 2016 Sep 12.
3
Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response.
Mol Cell. 2016 Aug 18;63(4):553-566. doi: 10.1016/j.molcel.2016.07.019.
4
Targeted Covalent Inhibitors for Drug Design.
Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13408-13421. doi: 10.1002/anie.201601091. Epub 2016 Aug 19.
5
Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase.
Cell Chem Biol. 2016 Jul 21;23(7):837-848. doi: 10.1016/j.chembiol.2016.05.017. Epub 2016 Jul 14.
6
Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells.
Blood. 2016 Sep 22;128(12):e32-42. doi: 10.1182/blood-2016-05-714816. Epub 2016 Jul 12.
7
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
8
Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.
Bioconjug Chem. 2016 May 18;27(5):1411-8. doi: 10.1021/acs.bioconjchem.6b00181. Epub 2016 May 9.
9
Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1.
Nature. 2016 Apr 7;532(7597):112-6. doi: 10.1038/nature17399. Epub 2016 Mar 30.
10
Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.
Chem Commun (Camb). 2016 Feb 25;52(16):3414-7. doi: 10.1039/c6cc00228e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验