López-Lorente Ángela I, Mizaikoff Boris
Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89069, Ulm, Germany.
Anal Bioanal Chem. 2016 Apr;408(11):2875-89. doi: 10.1007/s00216-016-9375-5. Epub 2016 Feb 16.
Mid-infrared (MIR) spectroscopy investigates the interaction of MIR photons with both organic and inorganic molecules via the excitation of vibrational and rotational modes, providing inherent molecular selectivity. In general, infrared (IR) spectroscopy is particularly sensitive to protein structure and structural changes via vibrational resonances originating from the polypeptide backbone or side chains; hence information on the secondary structure of proteins can be obtained in a label-free fashion. In this review, the challenges for IR spectroscopy for protein analysis are discussed as are the potential and limitations of different IR spectroscopic techniques enabling protein analysis. In particular, the amide I spectral range has been widely used to study protein secondary structure, conformational changes, protein aggregation, protein adsorption, and the formation of amyloid fibrils. In addition to representative examples of the potential of IR spectroscopy in various fields related to protein analysis, the potential of protein analysis taking advantage of miniaturized MIR systems, including waveguide-enhanced MIR sensors, is detailed.
中红外(MIR)光谱通过振动和转动模式的激发来研究MIR光子与有机和无机分子的相互作用,提供固有的分子选择性。一般来说,红外(IR)光谱通过源自多肽主链或侧链的振动共振对蛋白质结构和结构变化特别敏感;因此,可以以无标记的方式获得有关蛋白质二级结构的信息。在这篇综述中,讨论了红外光谱用于蛋白质分析所面临的挑战以及不同红外光谱技术用于蛋白质分析的潜力和局限性。特别是,酰胺I光谱范围已被广泛用于研究蛋白质二级结构、构象变化、蛋白质聚集、蛋白质吸附以及淀粉样纤维的形成。除了红外光谱在与蛋白质分析相关的各个领域的潜力的代表性例子外,还详细介绍了利用小型化MIR系统(包括波导增强MIR传感器)进行蛋白质分析的潜力。