Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany.
Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.
Osteoarthritis Cartilage. 2016 Jul;24(7):1200-9. doi: 10.1016/j.joca.2016.02.001. Epub 2016 Feb 12.
Current repair procedures for articular cartilage (AC) cannot restore the tissue's original form and function because neither changes in its architectural blueprint throughout life nor the respective biological understanding is fully available. We asked whether two unique elements of human cartilage architecture, the chondrocyte-surrounding pericellular matrix (PCM) and the superficial chondrocyte spatial organization (SCSO) beneath the articular surface (AS) are congenital, stable or dynamic throughout life. We hypothesized that inducing chondrocyte proliferation in vitro impairs organization and PCM and induces an advanced osteoarthritis (OA)-like structural phenotype of human cartilage.
We recorded propidium-iodine-stained fetal and adult cartilage explants, arranged stages of organization into a sequence, and created a lifetime-summarizing SCSO model. To replicate the OA-associated dynamics revealed by our model, and to test our hypothesis, we transduced specifically early OA-explants with hFGF-2 for inducing proliferation. The PCM was examined using immuno- and auto-fluorescence, multiphoton second-harmonic-generation (SHG), and scanning electron microscopy (SEM).
Spatial organization evolved from fetal homogeneity, peaked with adult string-like arrangements, but was completely lost in OA. Loss of organization included PCM perforation (local micro-fibrillar collagen intensity decrease) and destruction [regional collagen type VI (CollVI) signal weakness or absence]. Importantly, both loss of organization and PCM destruction were successfully recapitulated in FGF-2-transduced explants.
Induced proliferation of spatially characterized early OA-chondrocytes within standardized explants recapitulated the full range of loss of SCSO and PCM destruction, introducing a novel in vitro methodology. This methodology induces a structural phenotype of human cartilage that is similar to advanced OA and potentially of significance and utility.
目前的关节软骨(AC)修复程序无法恢复组织的原始形态和功能,因为其在整个生命周期中的结构蓝图变化以及相应的生物学认识都不完全清楚。我们想知道人类软骨结构的两个独特元素,即围绕软骨细胞的细胞外基质(PCM)和关节表面(AS)下方的浅层软骨细胞空间组织(SCSO),是否在整个生命周期中是先天性的、稳定的还是动态的。我们假设在体外诱导软骨细胞增殖会破坏组织和 PCM,并诱导人软骨出现先进的骨关节炎(OA)样结构表型。
我们记录了碘化丙啶染色的胎儿和成人软骨外植体,将组织排列阶段排列成一个序列,并创建了一个终生总结的 SCSO 模型。为了复制我们模型揭示的与 OA 相关的动态,并验证我们的假设,我们专门用 hFGF-2 转导早期 OA 外植体以诱导增殖。使用免疫和自荧光、多光子二次谐波产生(SHG)和扫描电子显微镜(SEM)检查 PCM。
空间组织从胎儿的均匀性演变而来,在成人时达到线状排列的高峰,但在 OA 中完全丧失。组织丧失包括 PCM 穿孔(局部微纤维胶原强度降低)和破坏[区域胶原 VI(CollVI)信号减弱或缺失]。重要的是,在 FGF-2 转导的外植体中成功地再现了组织丧失和 PCM 破坏。
在标准化外植体中,空间特征化的早期 OA 软骨细胞的诱导增殖再现了 SCSO 丧失和 PCM 破坏的全部范围,引入了一种新的体外方法。这种方法诱导的人软骨结构表型类似于晚期 OA,具有重要意义和应用价值。