Suppr超能文献

具有可调形态的均匀分散的Co/CoO/C纳米球作为锂离子电池的高性能阳极

Well-Dispersed Co/CoO/C Nanospheres with Tunable Morphology as High-Performance Anodes for Lithium Ion Batteries.

作者信息

Xu Bingqing, Li Jingwei, Chen Rujun, Lin Yuanhua, Nan Cewen, Shen Yang

机构信息

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Materials (Basel). 2016 Nov 24;9(12):955. doi: 10.3390/ma9120955.

Abstract

Well-dispersed Co/CoO/C nanospheres have been designed and constructed through a facile electrospinning method with a strategy controlling the morphology of nanocomposites via adjusting the pre-oxidized and heat treatments. Scanning electron microscopy results reveal that the as-synthesized sample pre-oxidized at 275 °C shows better spherical morphology with a diameter of around 300 nm without conspicuous agglomeration. X-ray diffraction analysis confirms the coexistence of cobalt and cobalt monoxide in the sample. Furthermore, the electrochemical tests reveal that the sample pre-oxidized at 275 °C displays excellent cycling stability with only 0.016% loss per cycle even after 400 cycles at 1000 mA·g and enhanced high-rate capability with a specific discharge capacity of 354 mA·g at 2000 mA·g. Besides, the sample pre-oxidized at 275 °C shows a specific capacity of 755 mA·g at 100 mA·g after 95 cycles. The improved electrochemical performance has been ascribed to the well dispersion of nanospheres, the improved electronic conductivity, and the structural integrity contribution from the carbon and cobalt coexisting nanocomposite. The strategy for preparing well-dispersed nanospheres by adjusting pre-oxidized and annealing processes could have insight for other oxide nanosphere synthesis.

摘要

通过一种简便的静电纺丝方法,并采用通过调整预氧化和热处理来控制纳米复合材料形态的策略,设计并构建了分散良好的Co/CoO/C纳米球。扫描电子显微镜结果表明,在275℃下预氧化的合成样品呈现出更好的球形形态,直径约为300nm,无明显团聚。X射线衍射分析证实了样品中钴和氧化钴的共存。此外,电化学测试表明,在275℃下预氧化的样品表现出优异的循环稳定性,即使在1000mA·g下循环400次后,每次循环的损失仅为0.016%,并且在2000mA·g下具有增强的高倍率性能,比放电容量为354mA·g。此外,在275℃下预氧化的样品在95次循环后,在100mA·g下的比容量为755mA·g。电化学性能的改善归因于纳米球的良好分散、电子导电性的提高以及碳和钴共存纳米复合材料的结构完整性贡献。通过调整预氧化和退火工艺制备分散良好的纳米球的策略可能为其他氧化物纳米球的合成提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d054/5457014/5ec298c4f8aa/materials-09-00955-g001.jpg

相似文献

2
Sandwich-Like Co₃O₄/Graphene Nanocomposites as Anode Material for Lithium Ion Batteries.
J Nanosci Nanotechnol. 2019 Dec 1;19(12):7819-7825. doi: 10.1166/jnn.2019.16744.
4
Nanostructured CoO/NiO/CoNi anodes with tunable morphology for high performance lithium-ion batteries.
Dalton Trans. 2017 Aug 22;46(33):11031-11036. doi: 10.1039/c7dt01904a.
5
Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries.
Nanomaterials (Basel). 2018 Mar 22;8(4):183. doi: 10.3390/nano8040183.
6
Tunable Synthesis of Hierarchical Yolk/Double-Shelled SiO @TiO @C Nanospheres for High-Performance Lithium-Ion Batteries.
Chemistry. 2021 Feb 5;27(8):2654-2661. doi: 10.1002/chem.202003246. Epub 2020 Dec 3.
7
Nanoporous Composites of CoO Quantum Dots and ZIF-Derived Carbon as High-Performance Anodes for Lithium-Ion Batteries.
ACS Omega. 2020 Aug 19;5(34):21488-21496. doi: 10.1021/acsomega.0c02037. eCollection 2020 Sep 1.
9
Carbon-coated cobalt oxide porous spheres with improved kinetics and good structural stability for long-life lithium-ion batteries.
J Colloid Interface Sci. 2018 Jan 15;510:368-375. doi: 10.1016/j.jcis.2017.09.086. Epub 2017 Sep 22.
10
Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
ACS Nano. 2012 Feb 28;6(2):1074-81. doi: 10.1021/nn202888d. Epub 2012 Jan 18.

本文引用的文献

1
Recent Progress in Advanced Materials for Lithium Ion Batteries.
Materials (Basel). 2013 Jan 10;6(1):156-183. doi: 10.3390/ma6010156.
2
Rational Design of NiCoO2@SnO2 Heterostructure Attached on Amorphous Carbon Nanotubes with Improved Lithium Storage Properties.
ACS Appl Mater Interfaces. 2016 Mar 9;8(9):6004-10. doi: 10.1021/acsami.5b11556. Epub 2016 Feb 23.
3
Mixed transition-metal oxides: design, synthesis, and energy-related applications.
Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1488-504. doi: 10.1002/anie.201303971. Epub 2014 Jan 2.
7
The Li-ion rechargeable battery: a perspective.
J Am Chem Soc. 2013 Jan 30;135(4):1167-76. doi: 10.1021/ja3091438. Epub 2013 Jan 18.
8
Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.
Adv Mater. 2012 Oct 2;24(38):5166-80. doi: 10.1002/adma.201202146. Epub 2012 Aug 21.
9
Nanomaterials for rechargeable lithium batteries.
Angew Chem Int Ed Engl. 2008;47(16):2930-46. doi: 10.1002/anie.200702505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验