Kunze Tim, Hunold Alexander, Haueisen Jens, Jirsa Viktor, Spiegler Andreas
Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Gustav-Kirchhoff Str. 2, 98693 Ilmenau, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany.
Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Gustav-Kirchhoff Str. 2, 98693 Ilmenau, Germany.
Neuroimage. 2016 Oct 15;140:174-87. doi: 10.1016/j.neuroimage.2016.02.015. Epub 2016 Feb 13.
Transcranial direct current stimulation (tDCS) is a noninvasive technique for affecting brain dynamics with promising application in the clinical therapy of neurological and psychiatric disorders such as Parkinson's disease, Alzheimer's disease, depression, and schizophrenia. Resting state dynamics increasingly play a role in the assessment of connectivity-based pathologies such as Alzheimer's and schizophrenia. We systematically applied tDCS in a large-scale network model of 74 cerebral areas, investigating the spatiotemporal changes in dynamic states as a function of structural connectivity changes. Structural connectivity was defined by the human connectome. The main findings of this study are fourfold: Firstly, we found a tDCS-induced increase in functional connectivity among cerebral areas and among EEG sensors, where the latter reproduced empirical findings of other researchers. Secondly, the analysis of the network dynamics suggested synchronization to be the main mechanism of the observed effects. Thirdly, we found that tDCS sharpens and shifts the frequency distribution of scalp EEG sensors slightly towards higher frequencies. Fourthly, new dynamic states emerged through interacting areas in the network compared to the dynamics of an isolated area. The findings propose synchronization as a key mechanism underlying the changes in the spatiotemporal pattern formation due to tDCS. Our work supports the notion that noninvasive brain stimulation is able to bias brain dynamics by affecting the competitive interplay of functional subnetworks.
经颅直流电刺激(tDCS)是一种用于影响脑动力学的非侵入性技术,在帕金森病、阿尔茨海默病、抑郁症和精神分裂症等神经和精神疾病的临床治疗中具有广阔的应用前景。静息态动力学在诸如阿尔茨海默病和精神分裂症等基于连接性的病理学评估中发挥着越来越重要的作用。我们在一个包含74个脑区的大规模网络模型中系统地应用了tDCS,研究动态状态随结构连接性变化的时空变化。结构连接性由人类连接组定义。本研究的主要发现有四点:第一,我们发现tDCS可导致脑区之间以及脑电图(EEG)传感器之间的功能连接性增加,其中后者重现了其他研究人员的实证结果。第二,对网络动力学的分析表明同步是观察到的效应的主要机制。第三,我们发现tDCS使头皮EEG传感器的频率分布变尖锐并略微向更高频率偏移。第四,与孤立区域的动力学相比,通过网络中相互作用的区域出现了新的动态状态。这些发现提出同步是tDCS导致时空模式形成变化的关键机制。我们的工作支持这样一种观点,即非侵入性脑刺激能够通过影响功能子网的竞争性相互作用来改变脑动力学。