Suppr超能文献

基于学习的视网膜图像中糖尿病性黄斑水肿检测视觉显著性模型

Learning-Based Visual Saliency Model for Detecting Diabetic Macular Edema in Retinal Image.

作者信息

Zou Xiaochun, Zhao Xinbo, Yang Yongjia, Li Na

机构信息

School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China.

School of Computer Science, Northwestern Polytechnical University, Chang'an Campus, P.O. Box 886, Xi'an, Shaanxi 710129, China.

出版信息

Comput Intell Neurosci. 2016;2016:7496735. doi: 10.1155/2016/7496735. Epub 2016 Jan 14.

Abstract

This paper brings forth a learning-based visual saliency model method for detecting diagnostic diabetic macular edema (DME) regions of interest (RoIs) in retinal image. The method introduces the cognitive process of visual selection of relevant regions that arises during an ophthalmologist's image examination. To record the process, we collected eye-tracking data of 10 ophthalmologists on 100 images and used this database as training and testing examples. Based on analysis, two properties (Feature Property and Position Property) can be derived and combined by a simple intersection operation to obtain a saliency map. The Feature Property is implemented by support vector machine (SVM) technique using the diagnosis as supervisor; Position Property is implemented by statistical analysis of training samples. This technique is able to learn the preferences of ophthalmologist visual behavior while simultaneously considering feature uniqueness. The method was evaluated using three popular saliency model evaluation scores (AUC, EMD, and SS) and three quality measurements (classical sensitivity, specificity, and Youden's J statistic). The proposed method outperforms 8 state-of-the-art saliency models and 3 salient region detection approaches devised for natural images. Furthermore, our model successfully detects the DME RoIs in retinal image without sophisticated image processing such as region segmentation.

摘要

本文提出了一种基于学习的视觉显著性模型方法,用于检测视网膜图像中诊断糖尿病性黄斑水肿(DME)的感兴趣区域(RoI)。该方法引入了眼科医生在图像检查过程中对相关区域进行视觉选择的认知过程。为了记录这一过程,我们收集了10位眼科医生对100张图像的眼动数据,并将该数据库用作训练和测试示例。通过分析,可以得出两个属性(特征属性和位置属性),并通过简单的交集运算将它们组合起来,以获得显著性图。特征属性通过支持向量机(SVM)技术实现,以诊断结果作为监督;位置属性通过对训练样本的统计分析来实现。该技术能够学习眼科医生视觉行为的偏好,同时考虑特征的独特性。使用三种流行的显著性模型评估分数(AUC、EMD和SS)和三种质量测量指标(经典敏感性、特异性和尤登指数)对该方法进行了评估。所提出的方法优于8种先进的显著性模型和3种为自然图像设计的显著区域检测方法。此外,我们的模型无需复杂的图像处理(如区域分割)就能成功检测视网膜图像中的DME RoI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fc0/4738732/e6c637a46167/CIN2016-7496735.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验