Suppr超能文献

用于预测RGB-D显著图的分层多模态自适应融合(HMAF)网络

Hierarchical Multimodal Adaptive Fusion (HMAF) Network for Prediction of RGB-D Saliency.

作者信息

Lv Ying, Zhou Wujie

机构信息

School of Information and Electronic Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China.

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Comput Intell Neurosci. 2020 Nov 20;2020:8841681. doi: 10.1155/2020/8841681. eCollection 2020.

Abstract

Visual saliency prediction for RGB-D images is more challenging than that for their RGB counterparts. Additionally, very few investigations have been undertaken concerning RGB-D-saliency prediction. The proposed study presents a method based on a hierarchical multimodal adaptive fusion (HMAF) network to facilitate end-to-end prediction of RGB-D saliency. In the proposed method, hierarchical (multilevel) multimodal features are first extracted from an RGB image and depth map using a VGG-16-based two-stream network. Subsequently, the most significant hierarchical features of the said RGB image and depth map are predicted using three two-input attention modules. Furthermore, adaptive fusion of saliencies concerning the above-mentioned fused saliency features of different levels (hierarchical fusion saliency features) can be accomplished using a three-input attention module to facilitate high-accuracy RGB-D visual saliency prediction. Comparisons based on the application of the proposed HMAF-based approach against those of other state-of-the-art techniques on two challenging RGB-D datasets demonstrate that the proposed method outperforms other competing approaches consistently by a considerable margin.

摘要

对RGB-D图像进行视觉显著性预测比其对应的RGB图像更具挑战性。此外,关于RGB-D显著性预测的研究非常少。本研究提出了一种基于分层多模态自适应融合(HMAF)网络的方法,以促进RGB-D显著性的端到端预测。在所提出的方法中,首先使用基于VGG-16的双流网络从RGB图像和深度图中提取分层(多级)多模态特征。随后,使用三个双输入注意力模块预测上述RGB图像和深度图的最重要分层特征。此外,可以使用三输入注意力模块实现关于不同级别(分层融合显著性特征)的上述融合显著性特征的显著性自适应融合,以促进高精度的RGB-D视觉显著性预测。在两个具有挑战性的RGB-D数据集上,将基于所提出的基于HMAF的方法的应用与其他现有技术的应用进行比较,结果表明所提出的方法始终比其他竞争方法有相当大的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c339/7700038/fbb6dda9806d/CIN2020-8841681.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验