Suppr超能文献

在异质网络中, assortativity和领导力源自反优先连接。

Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.

作者信息

Sendiña-Nadal I, Danziger M M, Wang Z, Havlin S, Boccaletti S

机构信息

Complex Systems Group &GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.

Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.

出版信息

Sci Rep. 2016 Feb 18;6:21297. doi: 10.1038/srep21297.

Abstract

Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

摘要

现实世界中的网络具有独特的拓扑结构,与纯粹的随机网络有显著偏差。其中许多网络表现出度相关性,即度相似的节点更有可能相互连接。尽管有人提出了微观机制来解释其他拓扑特征的出现,但度相关性仍然难以捉摸。度相关性可以通过保持度不变的链接排列人为地植入网络中,然而这会破坏图的层次聚类,并且与任何微观机制都不对应。在这里,我们提出了第一个生成模型,该模型创建了在度分布和聚类分布方面具有类似无标度特性且具有可调现实度相关性的异构网络。通过随机选择一个子图进行连接,将两个不同的节点群体逐步添加到初始网络中。一个群体(跟随者)遵循优先连接,而另一个群体(潜在领导者)通过反优先连接进行连接:当它们被添加到网络中时,会连接到度较低的节点。通过选择度较低的节点,潜在领导者节点在增长过程中保持较高的可见性,最终成长为中心节点。Facebook中链接的演变从经验上验证了初始反优先连接与长期高度之间的联系。通过这种方式,我们的工作为社交网络的结构和演变提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95b6/4758035/b6a33e110c15/srep21297-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验