Suppr超能文献

大鼠副下托的功能结构

Functional Architecture of the Rat Parasubiculum.

作者信息

Tang Qiusong, Burgalossi Andrea, Ebbesen Christian Laut, Sanguinetti-Scheck Juan Ignacio, Schmidt Helene, Tukker John J, Naumann Robert, Ray Saikat, Preston-Ferrer Patricia, Schmitz Dietmar, Brecht Michael

机构信息

Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, 10115 Berlin, Germany.

Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany,

出版信息

J Neurosci. 2016 Feb 17;36(7):2289-301. doi: 10.1523/JNEUROSCI.3749-15.2016.

Abstract

UNLABELLED

The parasubiculum is a major input structure of layer 2 of medial entorhinal cortex, where most grid cells are found. Here we investigated parasubicular circuits of the rat by anatomical analysis combined with juxtacellular recording/labeling and tetrode recordings during spatial exploration. In tangential sections, the parasubiculum appears as a linear structure flanking the medial entorhinal cortex mediodorsally. With a length of ∼5.2 mm and a width of only ∼0.3 mm (approximately one dendritic tree diameter), the parasubiculum is both one of the longest and narrowest cortical structures. Parasubicular neurons span the height of cortical layers 2 and 3, and we observed no obvious association of deep layers to this structure. The "superficial parasubiculum" (layers 2 and 1) divides into ∼15 patches, whereas deeper parasubicular sections (layer 3) form a continuous band of neurons. Anterograde tracing experiments show that parasubicular neurons extend long "circumcurrent" axons establishing a "global" internal connectivity. The parasubiculum is a prime target of GABAergic and cholinergic medial septal inputs. Other input structures include the subiculum, presubiculum, and anterior thalamus. Functional analysis of identified and unidentified parasubicular neurons shows strong theta rhythmicity of spiking, a large fraction of head-direction selectivity (50%, 34 of 68), and spatial responses (grid, border and irregular spatial cells, 57%, 39 of 68). Parasubicular output preferentially targets patches of calbindin-positive pyramidal neurons in layer 2 of medial entorhinal cortex, which might be relevant for grid cell function. These findings suggest the parasubiculum might shape entorhinal theta rhythmicity and the (dorsoventral) integration of information across grid scales.

SIGNIFICANCE STATEMENT

Grid cells in medial entorhinal cortex (MEC) are crucial components of an internal navigation system of the mammalian brain. The parasubiculum is a major input structure of layer 2 of MEC, where most grid cells are found. Here we provide a functional and anatomical characterization of the parasubiculum and show that parasubicular neurons display unique features (i.e., strong theta rhythmicity of firing, prominent head-direction selectivity, and output selectively targeted to layer 2 pyramidal cell patches of MEC). These features could contribute to shaping the temporal and spatial code of downstream grid cells in entorhinal cortex.

摘要

未标注

副内嗅皮层是内侧内嗅皮层第2层的主要输入结构,而内侧内嗅皮层是大多数网格细胞所在之处。在此,我们通过解剖分析,并结合在空间探索过程中的细胞旁记录/标记及四极管记录,对大鼠的副内嗅皮层回路进行了研究。在切向切片中,副内嗅皮层表现为位于内侧内嗅皮层背内侧的线性结构。副内嗅皮层长度约为5.2毫米,宽度仅约0.3毫米(约为一个树突直径),是最长且最窄的皮层结构之一。副内嗅皮层神经元跨越皮层第2层和第3层的高度,我们未观察到深层与该结构有明显关联。“浅层副内嗅皮层”(第2层和第1层)分为约15个斑块,而较深层的副内嗅皮层切片(第3层)形成连续的神经元带。顺行示踪实验表明,副内嗅皮层神经元延伸出长的“环行”轴突,建立起“全局”内部连接。副内嗅皮层是内侧隔核GABA能和胆碱能输入的主要靶点。其他输入结构包括海马下托、前内嗅皮层和前丘脑。对已识别和未识别的副内嗅皮层神经元的功能分析显示,其放电具有强烈的theta节律性,很大一部分具有头部方向选择性(50%,68个中有34个)以及空间反应(网格、边界和不规则空间细胞,57%,68个中有39个)。副内嗅皮层的输出优先靶向内侧内嗅皮层第2层中钙结合蛋白阳性锥体神经元的斑块,这可能与网格细胞功能相关。这些发现表明,副内嗅皮层可能塑造内嗅皮层的theta节律性以及跨网格尺度的(背腹向)信息整合。

意义声明

内侧内嗅皮层(MEC)中的网格细胞是哺乳动物脑内导航系统的关键组成部分。副内嗅皮层是MEC第2层的主要输入结构,而大多数网格细胞位于该层。在此,我们对副内嗅皮层进行了功能和解剖学特征描述,并表明副内嗅皮层神经元具有独特特征(即放电具有强烈的theta节律性、显著的头部方向选择性,以及输出选择性靶向MEC第2层锥体细胞斑块)。这些特征可能有助于塑造内嗅皮层下游网格细胞的时间和空间编码。

相似文献

1
Functional Architecture of the Rat Parasubiculum.
J Neurosci. 2016 Feb 17;36(7):2289-301. doi: 10.1523/JNEUROSCI.3749-15.2016.
2
Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex.
J Neurosci. 2015 Sep 9;35(36):12346-54. doi: 10.1523/JNEUROSCI.0696-15.2015.
3
Postnatal Development of Functional Projections from Parasubiculum and Presubiculum to Medial Entorhinal Cortex in the Rat.
J Neurosci. 2019 Oct 30;39(44):8645-8663. doi: 10.1523/JNEUROSCI.1623-19.2019. Epub 2019 Sep 11.
4
Presubicular and parasubicular cortical neurons of the rat: functional separation of deep and superficial neurons in vitro.
J Physiol. 1997 Jun 1;501 ( Pt 2)(Pt 2):387-403. doi: 10.1111/j.1469-7793.1997.387bn.x.
5
All layers of medial entorhinal cortex receive presubicular and parasubicular inputs.
J Neurosci. 2012 Dec 5;32(49):17620-31. doi: 10.1523/JNEUROSCI.3526-12.2012.
6
Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum.
J Neurophysiol. 2016 Aug 1;116(2):658-70. doi: 10.1152/jn.00095.2016. Epub 2016 May 4.
7
Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex.
Science. 2014 Feb 21;343(6173):891-6. doi: 10.1126/science.1243028. Epub 2014 Jan 23.
8
Grid cells in pre- and parasubiculum.
Nat Neurosci. 2010 Aug;13(8):987-94. doi: 10.1038/nn.2602. Epub 2010 Jul 25.
10
Presubicular and parasubicular cortical neurons of the rat: electrophysiological and morphological properties.
Hippocampus. 1997;7(2):117-29. doi: 10.1002/(SICI)1098-1063(1997)7:2<117::AID-HIPO1>3.0.CO;2-K.

引用本文的文献

2
Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder.
Front Psychiatry. 2023 Jul 20;14:1191170. doi: 10.3389/fpsyt.2023.1191170. eCollection 2023.
4
Baduanjin exercise modulates the hippocampal subregion structure in community-dwelling older adults with cognitive frailty.
Front Aging Neurosci. 2022 Dec 19;14:956273. doi: 10.3389/fnagi.2022.956273. eCollection 2022.
5
Exercise Modulates Brain Glucose Utilization Response to Acute Cocaine.
J Pers Med. 2022 Nov 30;12(12):1976. doi: 10.3390/jpm12121976.
7
Simulation of oscillatory dynamics induced by an approximation of grid cell output.
Rev Neurosci. 2022 Nov 4;34(5):517-532. doi: 10.1515/revneuro-2022-0107. Print 2023 Jul 26.
8
Functional network topography of the medial entorhinal cortex.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2121655119.
10
Microcircuits for spatial coding in the medial entorhinal cortex.
Physiol Rev. 2022 Apr 1;102(2):653-688. doi: 10.1152/physrev.00042.2020. Epub 2021 Jul 13.

本文引用的文献

1
Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex.
J Neurosci. 2015 Sep 9;35(36):12346-54. doi: 10.1523/JNEUROSCI.0696-15.2015.
2
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
3
Environmental boundaries as an error correction mechanism for grid cells.
Neuron. 2015 May 6;86(3):827-39. doi: 10.1016/j.neuron.2015.03.039. Epub 2015 Apr 16.
4
Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal.
Science. 2015 Feb 20;347(6224):870-874. doi: 10.1126/science.1259591. Epub 2015 Feb 5.
5
Grid cell symmetry is shaped by environmental geometry.
Nature. 2015 Feb 12;518(7538):232-235. doi: 10.1038/nature14153.
6
Shearing-induced asymmetry in entorhinal grid cells.
Nature. 2015 Feb 12;518(7538):207-12. doi: 10.1038/nature14151.
7
Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.
PLoS Comput Biol. 2015 Jan 23;11(1):e1004032. doi: 10.1371/journal.pcbi.1004032. eCollection 2015 Jan.
8
The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience.
Neuron. 2014 Dec 17;84(6):1120-5. doi: 10.1016/j.neuron.2014.12.009.
9
Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.
Neuron. 2014 Dec 17;84(6):1191-7. doi: 10.1016/j.neuron.2014.11.009. Epub 2014 Dec 4.
10
Juxtacellular recording and morphological identification of single neurons in freely moving rats.
Nat Protoc. 2014 Oct;9(10):2369-81. doi: 10.1038/nprot.2014.161. Epub 2014 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验