Suppr超能文献

言语的心理意象涉及两种知觉重新激活机制。

Mental imagery of speech implicates two mechanisms of perceptual reactivation.

作者信息

Tian Xing, Zarate Jean Mary, Poeppel David

机构信息

New York University Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, China; Department of Psychology, New York University, USA.

Department of Psychology, New York University, USA.

出版信息

Cortex. 2016 Apr;77:1-12. doi: 10.1016/j.cortex.2016.01.002. Epub 2016 Jan 14.

Abstract

Sensory cortices can be activated without any external stimuli. Yet, it is still unclear how this perceptual reactivation occurs and which neural structures mediate this reconstruction process. In this study, we employed fMRI with mental imagery paradigms to investigate the neural networks involved in perceptual reactivation. Subjects performed two speech imagery tasks: articulation imagery (AI) and hearing imagery (HI). We found that AI induced greater activity in frontal-parietal sensorimotor systems, including sensorimotor cortex, subcentral (BA 43), middle frontal cortex (BA 46) and parietal operculum (PO), whereas HI showed stronger activation in regions that have been implicated in memory retrieval: middle frontal (BA 8), inferior parietal cortex and intraparietal sulcus. Moreover, posterior superior temporal sulcus (pSTS) and anterior superior temporal gyrus (aSTG) was activated more in AI compared with HI, suggesting that covert motor processes induced stronger perceptual reactivation in the auditory cortices. These results suggest that motor-to-perceptual transformation and memory retrieval act as two complementary mechanisms to internally reconstruct corresponding perceptual outcomes. These two mechanisms can serve as a neurocomputational foundation for predicting perceptual changes, either via a previously learned relationship between actions and their perceptual consequences or via stored perceptual experiences of stimulus and episodic or contextual regularity.

摘要

感觉皮层可以在没有任何外部刺激的情况下被激活。然而,这种感知再激活是如何发生的,以及哪些神经结构介导了这一重建过程,目前仍不清楚。在本研究中,我们采用功能磁共振成像(fMRI)结合心理意象范式来研究参与感知再激活的神经网络。受试者执行了两项言语意象任务:发音意象(AI)和听觉意象(HI)。我们发现,AI在额顶感觉运动系统中诱导出更大的活动,包括感觉运动皮层、中央下区(BA 43)、额中回(BA 46)和顶叶岛盖(PO),而HI在与记忆检索相关的区域表现出更强的激活:额中回(BA 8)、顶下小叶和顶内沟。此外,与HI相比,AI中后颞上沟(pSTS)和前颞上回(aSTG)的激活更强,这表明隐蔽的运动过程在听觉皮层中诱导出更强的感知再激活。这些结果表明,从运动到感知的转换和记忆检索作为两种互补机制来在内部重建相应的感知结果。这两种机制可以作为一种神经计算基础,用于预测感知变化,要么通过先前学习的动作与其感知后果之间的关系,要么通过存储的刺激感知经验以及情景或背景规律。

相似文献

1
Mental imagery of speech implicates two mechanisms of perceptual reactivation.
Cortex. 2016 Apr;77:1-12. doi: 10.1016/j.cortex.2016.01.002. Epub 2016 Jan 14.
2
Distinct Mechanisms of Imagery Differentially Influence Speech Perception.
eNeuro. 2019 Sep 19;6(5). doi: 10.1523/ENEURO.0261-19.2019. Print 2019 Sep/Oct.
3
Cross-modal binding and activated attentional networks during audio-visual speech integration: a functional MRI study.
Cereb Cortex. 2005 Nov;15(11):1750-60. doi: 10.1093/cercor/bhi052. Epub 2005 Feb 16.
4
Reading speech from still and moving faces: the neural substrates of visible speech.
J Cogn Neurosci. 2003 Jan 1;15(1):57-70. doi: 10.1162/089892903321107828.
5
Song and speech: brain regions involved with perception and covert production.
Neuroimage. 2006 Jul 1;31(3):1327-42. doi: 10.1016/j.neuroimage.2006.01.036. Epub 2006 Mar 20.
6
Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation.
Front Hum Neurosci. 2012 Nov 28;6:314. doi: 10.3389/fnhum.2012.00314. eCollection 2012.
7
Neural evidence for predictive coding in auditory cortex during speech production.
Psychon Bull Rev. 2018 Feb;25(1):423-430. doi: 10.3758/s13423-017-1284-x.
8
The dynamic and task-dependent representational transformation between the motor and sensory systems during speech production.
Cogn Neurosci. 2020 Jul-Oct;11(4):194-204. doi: 10.1080/17588928.2020.1792868. Epub 2020 Jul 28.
9
Noise differentially impacts phoneme representations in the auditory and speech motor systems.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):7126-31. doi: 10.1073/pnas.1318738111. Epub 2014 Apr 28.
10
Sensory-motor networks involved in speech production and motor control: an fMRI study.
Neuroimage. 2015 Apr 1;109:418-28. doi: 10.1016/j.neuroimage.2015.01.040. Epub 2015 Jan 24.

引用本文的文献

2
Distinct distributed brain networks dissociate self-generated mental states.
bioRxiv. 2025 Feb 27:2025.02.27.640604. doi: 10.1101/2025.02.27.640604.
3
Gamma and Theta/Alpha-Band Oscillations in the Electroencephalogram Distinguish the Content of Inner Speech.
eNeuro. 2025 Feb 10;12(2). doi: 10.1523/ENEURO.0297-24.2025. Print 2025 Feb.
4
Decoding reveals the neural representation of perceived and imagined musical sounds.
PLoS Biol. 2024 Oct 21;22(10):e3002858. doi: 10.1371/journal.pbio.3002858. eCollection 2024 Oct.
5
Impaired motor-to-sensory transformation mediates auditory hallucinations.
PLoS Biol. 2024 Oct 3;22(10):e3002836. doi: 10.1371/journal.pbio.3002836. eCollection 2024 Oct.
6
Feasibility of decoding covert speech in ECoG with a Transformer trained on overt speech.
Sci Rep. 2024 May 20;14(1):11491. doi: 10.1038/s41598-024-62230-9.
7
Multiple processes of vocal sensory-motor interaction in primate auditory cortex.
Nat Commun. 2024 Apr 10;15(1):3093. doi: 10.1038/s41467-024-47510-2.
8
Unraveling the brain mechanisms of source monitoring with non-invasive brain stimulation: A systematic review.
Int J Clin Health Psychol. 2024 Apr-Jun;24(2):100449. doi: 10.1016/j.ijchp.2024.100449. Epub 2024 Feb 17.
9
Decoding reveals the neural representation of perceived and imagined musical sounds.
bioRxiv. 2024 Aug 20:2023.08.15.553456. doi: 10.1101/2023.08.15.553456.
10
The neuroanatomical hallmarks of chronic tinnitus in comorbidity with pure-tone hearing loss.
Brain Struct Funct. 2023 Jul;228(6):1511-1534. doi: 10.1007/s00429-023-02669-0. Epub 2023 Jun 22.

本文引用的文献

2
Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception.
J Cogn Neurosci. 1996 Winter;8(1):29-46. doi: 10.1162/jocn.1996.8.1.29.
3
Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations.
J Neurosci. 2013 Jul 17;33(29):12090-8. doi: 10.1523/JNEUROSCI.1008-13.2013.
4
The effect of imagination on stimulation: the functional specificity of efference copies in speech processing.
J Cogn Neurosci. 2013 Jul;25(7):1020-36. doi: 10.1162/jocn_a_00381. Epub 2013 Mar 7.
5
Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation.
Front Hum Neurosci. 2012 Nov 28;6:314. doi: 10.3389/fnhum.2012.00314. eCollection 2012.
6
The future of memory: remembering, imagining, and the brain.
Neuron. 2012 Nov 21;76(4):677-94. doi: 10.1016/j.neuron.2012.11.001.
7
A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading.
Neuroimage. 2012 Aug 15;62(2):816-47. doi: 10.1016/j.neuroimage.2012.04.062. Epub 2012 May 12.
8
9
Neuronal correlates of perception, imagery, and memory for familiar tunes.
J Cogn Neurosci. 2012 Jun;24(6):1382-97. doi: 10.1162/jocn_a_00216. Epub 2012 Feb 23.
10
Computational neuroanatomy of speech production.
Nat Rev Neurosci. 2012 Jan 5;13(2):135-45. doi: 10.1038/nrn3158.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验