Suppr超能文献

多标准情境发现:对气候变化适应稳健决策框架的评估。

Scenario Discovery with Multiple Criteria: An Evaluation of the Robust Decision-Making Framework for Climate Change Adaptation.

机构信息

Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD, USA.

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Risk Anal. 2016 Dec;36(12):2298-2312. doi: 10.1111/risa.12582. Epub 2016 Feb 18.

Abstract

There is increasing concern over deep uncertainty in the risk analysis field as probabilistic models of uncertainty cannot always be confidently determined or agreed upon for many of our most pressing contemporary risk challenges. This is particularly true in the climate change adaptation field, and has prompted the development of a number of frameworks aiming to characterize system vulnerabilities and identify robust alternatives. One such methodology is robust decision making (RDM), which uses simulation models to assess how strategies perform over many plausible conditions and then identifies and characterizes those where the strategy fails in a process termed scenario discovery. While many of the problems to which RDM has been applied are characterized by multiple objectives, research to date has provided little insight into how treatment of multiple criteria impacts the failure scenarios identified. In this research, we compare different methods for incorporating multiple objectives into the scenario discovery process to evaluate how they impact the resulting failure scenarios. We use the Lake Tana basin in Ethiopia as a case study, where climatic and environmental uncertainties could impact multiple planned water infrastructure projects, and find that failure scenarios may vary depending on the method used to aggregate multiple criteria. Common methods used to convert multiple attributes into a single utility score can obscure connections between failure scenarios and system performance, limiting the information provided to support decision making. Applying scenario discovery over each performance metric separately provides more nuanced information regarding the relative sensitivity of the objectives to different uncertain parameters, leading to clearer insights on measures that could be taken to improve system robustness and areas where additional research might prove useful.

摘要

人们越来越关注风险分析领域的深度不确定性,因为对于我们许多最紧迫的当代风险挑战,概率不确定性模型并不总是能够被自信地确定或达成一致。这在气候变化适应领域尤其如此,促使人们开发了许多框架,旨在描述系统脆弱性并确定稳健的替代方案。一种这样的方法是稳健决策制定(RDM),它使用模拟模型来评估策略在许多可能的情况下的表现,然后识别和描述策略在称为情景发现的过程中失败的那些情况。虽然 RDM 应用的许多问题都具有多个目标,但迄今为止的研究几乎没有深入了解处理多个标准如何影响识别出的失败情景。在这项研究中,我们比较了将多个目标纳入情景发现过程的不同方法,以评估它们如何影响所得到的失败情景。我们以埃塞俄比亚塔纳湖盆地为例,那里的气候和环境不确定性可能会影响多个计划中的水基础设施项目,并发现失败情景可能会因用于汇总多个标准的方法而异。用于将多个属性转换为单个效用分数的常用方法可能会掩盖失败情景与系统性能之间的联系,从而限制了提供的信息以支持决策制定。分别对每个绩效指标应用情景发现可以提供有关目标对不同不确定参数的相对敏感性的更细致的信息,从而更清楚地了解可以采取哪些措施来提高系统稳健性以及可能需要进一步研究的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验