Suppr超能文献

在深度不确定性下,不确定性参数分布对气候变化适应稳健决策结果的影响。

Impact of Uncertainty Parameter Distribution on Robust Decision Making Outcomes for Climate Change Adaptation under Deep Uncertainty.

机构信息

Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

出版信息

Risk Anal. 2020 Mar;40(3):494-511. doi: 10.1111/risa.13405. Epub 2019 Oct 3.

Abstract

Deep uncertainty in future climatic and economic conditions complicates developing infrastructure designed to last several generations, such as water reservoirs. In response, analysts have developed multiple robust decision frameworks to help identify investments and policies that can withstand a wide range of future states. Although these frameworks are adept at supporting decisions where uncertainty cannot be represented probabilistically, analysts necessarily choose probabilistic bounds and distributions for uncertain variables to support exploratory modeling. The implications of these assumptions on the analytical outcomes of robust decision frameworks are rarely evaluated, and little guidance exists in terms of how to select uncertain variable distributions. Here, we evaluate the impact of these choices by following the robust decision-making procedure, using four different assumptions about the probabilistic distribution of exogenous uncertainties in future climatic and economic states. We take a water reservoir system in Ethiopia as our case study, and sample climatic parameters from uniform, normal, extended uniform, and extended normal distributions; we similarly sample two economic parameters. We compute regret and satisficing robustness decision criteria for two performance measures, agricultural water demand coverage and net present value, and perform scenario discovery on the most robust reservoir alternative. We find lower robustness scores resulting from extended parameter distributions and demonstrate that parameter distributions can impact vulnerabilities identified through scenario discovery. Our results suggest that exploratory modeling within robust decision frameworks should sample from extended, uniform parameters distributions.

摘要

未来气候和经济条件的巨大不确定性使得设计能够持续几代人的基础设施(如水库)变得复杂。为此,分析人员开发了多种稳健决策框架,以帮助确定能够承受各种未来状态的投资和政策。尽管这些框架善于支持无法以概率表示不确定性的决策,但分析人员必然会选择不确定变量的概率边界和分布,以支持探索性建模。这些假设对稳健决策框架分析结果的影响很少得到评估,也几乎没有关于如何选择不确定变量分布的指导。在这里,我们通过遵循稳健决策程序,使用未来气候和经济状态中外生不确定性的概率分布的四种不同假设,来评估这些选择的影响。我们以埃塞俄比亚的一个水库系统为例,从均匀、正态、扩展均匀和扩展正态分布中抽样气候参数;我们类似地对两个经济参数进行抽样。我们针对两个性能指标(农业水需求覆盖和净现值)计算了遗憾和满足稳健性决策标准,并对最稳健的水库替代方案进行了情景发现。我们发现扩展参数分布会导致较低的稳健性得分,并证明参数分布会影响通过情景发现识别出的脆弱性。我们的结果表明,稳健决策框架内的探索性建模应从扩展的均匀参数分布中抽样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验