Ying Yiming, Zhou Ding-Xuan
Department of Mathematics and Statistics, State University of New York at Albany, Albany, NY 12222, U.S.A.
Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China
Neural Comput. 2016 Apr;28(4):743-77. doi: 10.1162/NECO_a_00817. Epub 2016 Feb 18.
Pairwise learning usually refers to a learning task that involves a loss function depending on pairs of examples, among which the most notable ones are bipartite ranking, metric learning, and AUC maximization. In this letter we study an online algorithm for pairwise learning with a least-square loss function in an unconstrained setting of a reproducing kernel Hilbert space (RKHS) that we refer to as the Online Pairwise lEaRning Algorithm (OPERA). In contrast to existing works (Kar, Sriperumbudur, Jain, & Karnick, 2013 ; Wang, Khardon, Pechyony, & Jones, 2012 ), which require that the iterates are restricted to a bounded domain or the loss function is strongly convex, OPERA is associated with a non-strongly convex objective function and learns the target function in an unconstrained RKHS. Specifically, we establish a general theorem that guarantees the almost sure convergence for the last iterate of OPERA without any assumptions on the underlying distribution. Explicit convergence rates are derived under the condition of polynomially decaying step sizes. We also establish an interesting property for a family of widely used kernels in the setting of pairwise learning and illustrate the convergence results using such kernels. Our methodology mainly depends on the characterization of RKHSs using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.
成对学习通常指的是一种学习任务,它涉及一个依赖于示例对的损失函数,其中最显著的是二分排序、度量学习和AUC最大化。在这封信中,我们研究了一种在线算法,用于在再生核希尔伯特空间(RKHS)的无约束设置中使用最小二乘损失函数进行成对学习,我们将其称为在线成对学习算法(OPERA)。与现有工作(Kar, Sriperumbudur, Jain, & Karnick, 2013;Wang, Khardon, Pechyony, & Jones, 2012)不同,现有工作要求迭代限制在有界域内或损失函数是强凸的,而OPERA与一个非强凸目标函数相关联,并在无约束的RKHS中学习目标函数。具体来说,我们建立了一个一般性定理,该定理保证了OPERA最后一次迭代的几乎必然收敛,而无需对基础分布做任何假设。在步长多项式衰减的条件下,得出了明确的收敛速率。我们还在成对学习的设置中为一类广泛使用的核建立了一个有趣的性质,并使用此类核说明了收敛结果。我们的方法主要依赖于使用其相关积分算子对RKHS的刻画以及希尔伯特空间中取值的随机变量的概率不等式。