Wang Cheng, Hu Ting, Jiang Siyang
School of Mathematics and Statistics Huizhou University, Huizhou 516007, China.
Center for Intelligent Decision-Making and Machine Learning School of Management,Xi'an Jiaotong University, Xi'an 710049, China.
Neural Netw. 2023 Jan;157:176-192. doi: 10.1016/j.neunet.2022.10.007. Epub 2022 Oct 21.
Pairwise learning usually refers to the learning problem that works with pairs of training samples, such as ranking, similarity and metric learning, and AUC maximization. To overcome the challenge of pairwise learning in the large scale computation, this paper introduces Nyström sampling approach to the coefficient-based regularized pairwise algorithm in the context of kernel networks. Our theorems establish that the obtained Nyström estimator achieves the minimax error over all estimators using the whole data provided that the subsampling level is not too small. We derive the function relation between the subsampling level and regularization parameter that guarantees computation cost reduction and asymptotic behaviors' optimality simultaneously. The Nyström coefficient-based pairwise learning method does not require the kernel to be symmetric or positive semi-definite, which provides more flexibility and adaptivity in the learning process. We apply the method to the bipartite ranking problem, which improves the state-of-the-art theoretical results in previous works. By developing probability inequalities for U-statistics on Hilbert-Schmidt operators, we provide new mathematical tools for handling pairs of examples involved in pairwise learning.
成对学习通常是指处理训练样本对的学习问题,例如排序、相似度和度量学习以及AUC最大化。为了克服大规模计算中成对学习的挑战,本文在核网络的背景下,将Nyström采样方法引入到基于系数的正则化成对算法中。我们的定理表明,只要子采样水平不是太小,所得到的Nyström估计器在使用全部数据的所有估计器中实现了极小极大误差。我们推导了子采样水平和正则化参数之间的函数关系,该关系同时保证了计算成本的降低和渐近行为的最优性。基于Nyström系数的成对学习方法不要求核是对称的或半正定的,这在学习过程中提供了更大的灵活性和适应性。我们将该方法应用于二分排序问题,改进了先前工作中的最新理论结果。通过为希尔伯特-施密特算子上的U统计量建立概率不等式,我们为处理成对学习中涉及的样本对提供了新的数学工具。