Perea-García Ana, Sanz Amparo, Moreno Joaquín, Andrés-Bordería Amparo, de Andrés Sonia Mayo, Davis Amanda M, Huijser Peter, Davis Seth J, Peñarrubia Lola
a Departament de Bioquímica i Biologia Molecular, Universitat de Valéencia , Burjassot , Valencia , Spain.
b Departament de Biologia Vegetal , Universitat de València, Valencia , Spain.
Plant Signal Behav. 2016;11(3):e1140291. doi: 10.1080/15592324.2016.1140291.
A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters (COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT targets. A model is presented here for such temporal regulation that is based on the synchrony between the basal oscillatory pattern of SPL7 and its targets, such as COPT2. Conversely, Cu feeds back to coordinate intracellular Cu availability on the SPL7-dependent regulation of further Cu acquisition. This occurs via regulation at COPT transporters. Moreover, exogenous Cu affects several circadian-clock components, such as the timing of GIGANTEA transcript abundance. Together we propose that there is a dynamic response to Cu that is integrated over diurnal time to maximize metabolic efficiency under challenging conditions.
在线粒体和叶绿体电子传递链中起作用的必需铜蛋白对铜(Cu)的差异需求会随着每日的光/暗周期而出现。这需要对铜的输送进行精细的时空调节,在非最佳生长条件下尤为重要。当铜稀缺时,铜通过质膜结合的高亲和力铜转运蛋白(COPTs)导入,其编码基因由SPL7转录因子转录诱导。SPL7及其COPT靶标的启动子中存在多个光响应和时钟响应调节顺式元件,证明了时间稳态机制的存在。这里提出了一个基于SPL7及其靶标(如COPT2)的基础振荡模式之间同步性的时间调节模型。相反,铜通过对COPT转运蛋白的调节进行反馈,以协调细胞内铜的可用性,从而进一步调节铜的获取。此外,外源铜会影响几个生物钟成分,如巨大转录本丰度的时间。我们共同提出,对铜存在动态响应,这种响应在昼夜时间内整合,以在具有挑战性的条件下最大化代谢效率。