Suppr超能文献

仿生混合反馈前馈神经网络学习控制。

Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Jun;28(6):1481-1487. doi: 10.1109/TNNLS.2016.2527501. Epub 2016 Mar 30.

Abstract

This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.

摘要

本简要介绍了一种受人类运动学习控制机制启发的仿生混合反馈前馈神经网络学习控制 (NNLC) 策略,用于一类不确定非线性系统。控制结构包括作为反馈伺服机构的比例微分控制器和作为前馈预测机构的径向基函数 (RBF) NN。在控制参数的充分约束下,闭环系统实现半全局实用指数稳定性,从而保证在沿递归参考轨迹的局部区域内实现精确的 NN 逼近。与现有的 NNLC 方法相比,所提出方法的新颖之处在于:1)实施自适应 NN 控制,不需要保证植物状态的递归,因为递归参考信号而不是植物状态被用作 NN 输入,这大大简化了 NNLC 的分析和综合;2)通过给定的参考信号可以预先确定 NN 逼近的域,从而易于构建 RBF-NN。仿真结果验证了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验