Suppr超能文献

用于MRI-CT图像重建的面向边缘的双字典引导增强(EDGE)

Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

作者信息

Li Liang, Wang Bigong, Wang Ge

机构信息

Department of Engineering Physics, Tsinghua University, Beijing, China.

Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, China.

出版信息

J Xray Sci Technol. 2016;24(1):161-75. doi: 10.3233/XST-160540.

Abstract

In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

摘要

在本文中,我们阐述了联合/同步X射线计算机断层扫描(CT)与磁共振成像(MRI)图像重建方法。具体而言,我们提出了一种用于从高度欠采样的MRI数据和CT图像重建MRI图像的新算法。该算法包括两个步骤。首先,从同一患者的一系列配准良好的MRI和CT图像生成一个训练数据集。然后,基于该训练数据集和患者的CT图像,通过基于边缘导向双字典引导富集(EDGE)的方法重建患者的初始MRI图像。其次,使用字典学习(DL)算法从高度欠采样的k空间数据和初始MRI图像重建MRI图像。我们的算法可以在两种成像模态之间建立一对一的对应关系,并获得良好的初始MRI估计。我们进行了无噪声和有噪声的模拟研究,以评估和验证所提出的算法。不同欠采样因子的结果表明,所提出的算法比仅使用DL算法从MRI数据重建的算法表现显著更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验