Suppr超能文献

基于基于补丁正则化和字典学习的正电子发射断层成像图像重建。

Image reconstruction for positron emission tomography based on patch-based regularization and dictionary learning.

机构信息

Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China.

出版信息

Med Phys. 2019 Nov;46(11):5014-5026. doi: 10.1002/mp.13804. Epub 2019 Sep 20.

Abstract

PURPOSE

Positron emission tomography (PET) is an important tool for nuclear medical imaging. It has been widely used in clinical diagnosis, scientific research, and drug testing. PET is a kind of emission computed tomography. Its basic imaging principle is to use the positron annihilation radiation generated by radionuclide decay to generate gamma photon images. However, in practical applications, due to the low gamma photon counting rate, limited acquisition time, inconsistent detector characteristics, and electronic noise, measured PET projection data often contain considerable noise, which results in ill-conditioned PET images. Therefore, determining how to obtain high-quality reconstructed PET images suitable for clinical applications is a valuable research topic. In this context, this paper presents an image reconstruction algorithm based on patch-based regularization and dictionary learning (DL) called the patch-DL algorithm. Compared to other algorithms, the proposed algorithm can retain more image details while suppressing noise.

METHODS

Expectation-maximization (EM)-like image updating, image smoothing, pixel-by-pixel image fusion, and DL are the four steps of the proposed reconstruction algorithm. We used a two-dimensional (2D) brain phantom to evaluate the proposed algorithm by simulating sinograms that contained random Poisson noise. We also quantitatively compared the patch-DL algorithm with a pixel-based algorithm, a patch-based algorithm, and an adaptive dictionary learning (AD) algorithm.

RESULTS

Through computer simulations, we demonstrated the advantages of the patch-DL method over the pixel-, patch-, and AD-based methods in terms of the tradeoff between noise suppression and detail retention in reconstructed images. Quantitative analysis shows that the proposed method results in a better performance statistically [according to the mean absolute error (MAE), correlation coefficient (CORR), and root mean square error (RMSE)] in considered region of interests (ROI) with two simulated count levels. Additionally, to analyze whether the results among these methods have significant differences, we used one-way analysis of variance (ANOVA) to calculate the corresponding P values. The results show that most of the P < 0.01; some P> 0.01 < 0.05. Therefore, our method can achieve a better quantitative performance than those of traditional methods.

CONCLUSIONS

The results show that the proposed algorithm has the potential to improve the quality of PET image reconstruction. Since the proposed algorithm was validated only with simulated 2D data, it still needs to be further validated with real three-dimensional data. In the future, we intend to explore GPU parallelization technology to further improve the computational efficiency and shorten the computation time.

摘要

目的

正电子发射断层扫描(PET)是核医学成像的重要工具。它已广泛应用于临床诊断、科学研究和药物测试。PET 是一种发射型计算机断层成像。其基本成像原理是利用放射性核素衰变产生的正电子湮没辐射产生伽马光子图像。然而,在实际应用中,由于伽马光子计数率低、采集时间有限、探测器特性不一致和电子噪声,测量的 PET 投影数据通常包含相当大的噪声,导致 PET 图像条件不佳。因此,确定如何获得适合临床应用的高质量重建 PET 图像是一个有价值的研究课题。在这种情况下,本文提出了一种基于补丁正则化和字典学习(DL)的图像重建算法,称为补丁-DL 算法。与其他算法相比,该算法在抑制噪声的同时可以保留更多的图像细节。

方法

期望最大化(EM)样图像更新、图像平滑、逐像素图像融合和 DL 是所提出的重建算法的四个步骤。我们使用二维(2D)脑体模通过模拟包含随机泊松噪声的正弦图来评估所提出的算法。我们还通过定量比较,将补丁-DL 算法与基于像素的算法、基于补丁的算法和自适应字典学习(AD)算法进行了比较。

结果

通过计算机模拟,我们在重建图像中噪声抑制和细节保留之间的权衡方面展示了补丁-DL 方法相对于基于像素、基于补丁和基于 AD 的方法的优势。定量分析表明,在所考虑的感兴趣区域(ROI)中,该方法在两个模拟计数水平下具有更好的性能[根据平均绝对误差(MAE)、相关系数(CORR)和均方根误差(RMSE)]。此外,为了分析这些方法之间的结果是否存在显著差异,我们使用单向方差分析(ANOVA)计算了相应的 P 值。结果表明,大多数 P<0.01;一些 P>0.01<0.05。因此,我们的方法可以实现比传统方法更好的定量性能。

结论

结果表明,所提出的算法具有提高 PET 图像重建质量的潜力。由于所提出的算法仅在模拟的 2D 数据上进行了验证,因此仍需要使用真实的 3D 数据进行进一步验证。在未来,我们计划探索 GPU 并行化技术,以进一步提高计算效率并缩短计算时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验