Suppr超能文献

在眼跳模型中引入上下文相关和空间变化的视觉偏差。

Introducing context-dependent and spatially-variant viewing biases in saccadic models.

作者信息

Le Meur Olivier, Coutrot Antoine

机构信息

IRISA University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes, France.

CoMPLEX, University College London, United Kingdom.

出版信息

Vision Res. 2016 Apr;121:72-84. doi: 10.1016/j.visres.2016.01.005. Epub 2016 Feb 26.

Abstract

Previous research showed the existence of systematic tendencies in viewing behavior during scene exploration. For instance, saccades are known to follow a positively skewed, long-tailed distribution, and to be more frequently initiated in the horizontal or vertical directions. In this study, we hypothesize that these viewing biases are not universal, but are modulated by the semantic visual category of the stimulus. We show that the joint distribution of saccade amplitudes and orientations significantly varies from one visual category to another. These joint distributions are in addition spatially variant within the scene frame. We demonstrate that a saliency model based on this better understanding of viewing behavioral biases and blind to any visual information outperforms well-established saliency models. We also propose a saccadic model that takes into account classical low-level features and spatially-variant and context-dependent viewing biases. This model outperforms state-of-the-art saliency models, and provides scanpaths in close agreement with human behavior. The better description of viewing biases will not only improve current models of visual attention but could also influence many other applications such as the design of human-computer interfaces, patient diagnosis or image/video processing applications.

摘要

先前的研究表明,在场景探索过程中,观看行为存在系统性倾向。例如,已知扫视遵循正偏态、长尾分布,并且更频繁地在水平或垂直方向发起。在本研究中,我们假设这些观看偏差并非普遍存在,而是受刺激的语义视觉类别调节。我们表明,扫视幅度和方向的联合分布在不同视觉类别之间存在显著差异。此外,这些联合分布在场景框架内也是空间变化的。我们证明,基于对观看行为偏差的更好理解且对任何视觉信息均无感知的显著性模型优于成熟的显著性模型。我们还提出了一种考虑经典低级特征以及空间变化和上下文相关观看偏差的扫视模型。该模型优于当前最先进的显著性模型,并提供与人类行为高度一致的扫描路径。对观看偏差的更好描述不仅将改进当前的视觉注意力模型,还可能影响许多其他应用,如人机界面设计、患者诊断或图像/视频处理应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验