Suppr超能文献

一种改善人工神经网络学习曲线的模型。

A Model for Improving the Learning Curves of Artificial Neural Networks.

作者信息

Monteiro Roberto L S, Carneiro Tereza Kelly G, Fontoura José Roberto A, da Silva Valéria L, Moret Marcelo A, Pereira Hernane Borges de Barros

机构信息

Programa de Modelagem Computational, SENAI CIMATEC, Av. Orlando Gomes 1845, Salvador, 41.650-010, Brazil.

Universidade do Estado da Bahia, Salvador, Brasil.

出版信息

PLoS One. 2016 Feb 22;11(2):e0149874. doi: 10.1371/journal.pone.0149874. eCollection 2016.

Abstract

In this article, the performance of a hybrid artificial neural network (i.e. scale-free and small-world) was analyzed and its learning curve compared to three other topologies: random, scale-free and small-world, as well as to the chemotaxis neural network of the nematode Caenorhabditis Elegans. One hundred equivalent networks (same number of vertices and average degree) for each topology were generated and each was trained for one thousand epochs. After comparing the mean learning curves of each network topology with the C. elegans neural network, we found that the networks that exhibited preferential attachment exhibited the best learning curves.

摘要

在本文中,分析了一种混合人工神经网络(即无标度和小世界网络)的性能,并将其学习曲线与其他三种拓扑结构进行了比较:随机网络、无标度网络和小世界网络,以及线虫秀丽隐杆线虫的趋化神经网络。为每种拓扑结构生成了100个等效网络(顶点数量和平均度相同),并对每个网络进行了1000个轮次的训练。在将每个网络拓扑结构的平均学习曲线与秀丽隐杆线虫神经网络进行比较后,我们发现表现出优先连接的网络具有最佳的学习曲线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa2/4763452/9847f6df50bc/pone.0149874.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验